Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 597

Авторы:
Тип:учебник

Задание 597

\[\boxed{\mathbf{597}.}\]

\[\frac{1}{5x + 1} - \frac{2}{5x - 1} -\]

\[- \frac{9x}{25x^{2} - 1} = \frac{5x^{2}}{1 - 25x^{2}}\]

\[\frac{(5x - 1) - 2(5x + 1)}{(5x + 1)(5x - 1)} -\]

\[- \frac{9x}{25x^{2} - 1} - \frac{5x^{2}}{1 - 25x^{2}} = 0\]

\[\frac{5x - 1 - 10x - 2}{25x^{2} - 1} -\]

\[- \frac{9x}{25x^{2} - 1} + \frac{5x^{2}}{25x^{2} - 1} = 0\]

\[\frac{5x^{2} - 14x - 3}{25x^{2} - 1} = 0\]

\[5x^{2} - 14x - 3 = 0\]

\[D_{1} = 49 + 15 = 64\]

\[x_{1} = \frac{7 + 8}{5} = 3;\ \ \]

\[x_{2} = \frac{7 - 8}{5} = - 0,2.\]

\[Выражение\ имеет\ смысл\ при:\]

\[25x^{2} - 1 \neq 0;\]

\[25x^{2} \neq 1;\]

\[x^{2} \neq \frac{1}{25};\]

\[x \neq \pm \frac{1}{5}.\]

\[Ответ:\ \ x = 3.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам