\[\boxed{\mathbf{586}.}\]
\[1)\ y = \frac{2x + 3}{x - 1} = \frac{2x - 2 + 5}{x - 1} =\]
\[= \frac{2 \cdot (x - 1) + 5}{x - 1} =\]
\[= 2 + \frac{5}{x - 1};x \neq 1.\]
\[2)\ y = \frac{1 - 2x}{4 - x} = \frac{8 - 2x - 7}{4 - x} =\]
\[= \frac{2 \cdot (4 - x) - 7}{4 - x} =\]
\[= 2 - \frac{7}{4 - x};\ \ x \neq 4.\]
\[3)\ y = \frac{4x + 1}{x - 2} = \frac{4x - 8 + 9}{x - 2} =\]
\[= \frac{4 \cdot (x - 2) + 9}{x - 2} =\]
\[= 4 + \frac{9}{x - 2};\ \ x \neq 2.\]
\[4)\ y = \frac{2 + 4x}{x + 2} = \frac{4x + 8 - 6}{x + 2} =\]
\[= \frac{4 \cdot (x + 2) - 6}{x + 2} =\]
\[= 4 - \frac{6}{x + 2};x \neq - 2.\]