\[\boxed{\mathbf{569}.}\]
\[1)\ y = \sqrt[5]{x}\text{\ \ }и\ \ y = x^{\frac{3}{5}};\]
\[\sqrt[5]{x} = x^{\frac{3}{5}};\]
\[x^{\frac{1}{5}} - x^{\frac{3}{5}} = 0;\]
\[x^{\frac{1}{5}} \bullet \left( 1 - x^{\frac{2}{5}} \right) = 0;\]
\[x^{\frac{1}{5}} \bullet \left( 1 - x^{\frac{1}{5}} \right)\left( 1 + x^{\frac{1}{5}} \right) = 0;\]
\[x_{1} = 0,\ \ \ x_{2} = 1;\ \ \ \ x_{3} = - 1;\]
\[y_{1} = 0,\ \ \ y_{2} = 1,\ \ \ y_{3} = - 1;\]
\[Функция\ y = x^{\frac{3}{5}}\ определена\ \]
\[при:\ \ x \geq 0.\]
\[Ответ:\ (0;\ 0);\ \ (1;\ 1).\]
\[2)\ y = \sqrt[7]{x}\text{\ \ }и\ \ y = x^{\frac{5}{7}};\]
\[\sqrt[7]{x} = x^{\frac{5}{7}};\]
\[x^{\frac{1}{7}} - x^{\frac{5}{7}} = 0;\]
\[x^{\frac{1}{7}} \bullet \left( 1 - x^{\frac{4}{7}} \right) = 0;\]
\[x^{\frac{1}{7}} \bullet \left( 1 - x^{\frac{2}{7}} \right)\left( 1 + x^{\frac{2}{7}} \right) = 0;\]
\[x^{\frac{1}{7}} \bullet \left( 1 - x^{\frac{1}{7}} \right)\left( 1 + x^{\frac{1}{7}} \right) = 0;\]
\[x_{1} = 0,\ \ \ x_{2} = 1,\ \ \ x_{3} = - 1;\]
\[y_{1} = 0,\ \ \ y_{2} = 1,\ \ \ y_{3} = - 1;\]
\[Функция\ y = x^{\frac{5}{7}}\ определена\]
\[\ при:\ \ x \geq 0;\]
\[Ответ:\ \ (0;\ 0);\ \ (1;\ 1).\]