\[\boxed{\mathbf{564}.}\]
\[1)\ \left( \frac{10}{11} \right)^{2,3}\text{\ \ }и\ \ \left( \frac{12}{11} \right)^{2,3};\]
\[\frac{10}{11} < \frac{12}{11};\]
\[\left( \frac{10}{11} \right)^{2,3} < \left( \frac{12}{11} \right)^{2,3}.\]
\[2)\ {2,5}^{- 8,1}\text{\ \ }и\ \ {2,6}^{- 8,1};\]
\[\left( \frac{10}{25} \right)^{8,1} > \left( \frac{10}{26} \right)^{8,1}\]
\[\frac{10}{25} > \frac{10}{26}\]
\[{2,5}^{- 8,1} > {2,6}^{- 8,1}.\]
\[3)\ \left( \frac{14}{15} \right)^{\frac{3}{4}}\text{\ \ }и\ \ \left( \frac{15}{16} \right)^{\frac{3}{4}};\]
\[\frac{14}{15} = \frac{224}{240}\text{\ \ }и\ \ \frac{15}{16} = \frac{225}{240};\]
\[\frac{224}{240} < \frac{225}{240};\]
\[\frac{14}{15} < \frac{15}{16};\]
\[\left( \frac{14}{15} \right)^{- 6} < \left( \frac{15}{16} \right)^{- 6}.\]
\[4)\ \left( 2\sqrt[3]{5} \right)^{- 0.2}\text{\ \ }и\ \ \left( 5\sqrt[3]{2} \right)^{- 0.2};\]
\[\left( 2\sqrt[3]{5} \right)^{3} = 8 \bullet 5 = 40;\text{\ \ }\left( \sqrt[3]{2} \right)^{3} =\]
\[= 125 \bullet 2 = 250;\]
\[40 < 250;\]
\[2\sqrt[3]{5} < 5\sqrt[3]{2};\]
\[\left( 2\sqrt{5} \right)^{- 0,2} > \left( 5\sqrt[3]{2} \right)^{- 0,2}.\]