\[\boxed{\mathbf{535}.}\]
\[1)\ \sqrt[3]{\sqrt{x - 1} + 2}\]
\[x - 1 \geq 0\]
\[x \geq 1.\]
\[Ответ:при\ x \geq 1.\]
\[2)\ \sqrt[4]{(1 - x)^{2} - 2}\]
\[(1 - x)^{2} - 2 \geq 0\]
\[1 - 2x + x^{2} - 2 \geq 0\]
\[x^{2} - 2x - 1 \geq 0\]
\[D_{1} = 1 + 1 = 2\]
\[x = 1 \pm \sqrt{2}.\]
\[\left( 1 - \sqrt{2} \right)\left( 1 + \sqrt{2} \right) \geq 0\]
\[Ответ:при\ x \leq 1 - \sqrt{2};\ \]
\[\ x \geq 1 + \sqrt{2}.\]
\[3)\ \left( (1 + x)^{- 1} - 3 \right)^{\frac{1}{3}} =\]
\[= \sqrt[3]{\frac{1}{1 + x} - 3}\]
\[1 + x \neq 0\]
\[x \neq - 1.\]
\[Ответ:при\ x \neq - 1.\]
\[4)\ \left( x + 4 \cdot (x - 1)^{- 2} \right)^{- \frac{2}{5}} =\]
\[= \sqrt[5]{\left( \frac{1}{x + \frac{4}{(x - 1)^{2}}} \right)^{2}}\]
\[x + \frac{4}{(x - 1)^{2}} > 0\]
\[\frac{x(x - 1)^{2} + 4}{(x - 1)^{2}} > 0\]
\[\frac{x^{3} - 2x^{2} + x + 4}{(x - 1)^{2}} > 0\]
\[x^{2} - 3x + 4 = 0\]
\[D = 9 - 16 = - 7 < 0\]
\[нет\ корней.\]
\[(x - 1)^{2} > 0;\]
\[x + 1 > 0\]
\[x > - 1.\]
\[Ответ:x > - 1.\]