\[\boxed{\mathbf{532}.}\]
\[\sqrt{65 + 6\sqrt{14}} + \sqrt{65 - 6\sqrt{14}} = A\]
\[x = \sqrt{65 + 6\sqrt{14}};\ \]
\[\ y = \sqrt{65 - 6\sqrt{14}}\]
\[x^{2} + y^{2} = 65 + 6\sqrt{14} + 65 -\]
\[- 6\sqrt{14} = 130;\]
\[xy =\]
\[= \sqrt{\left( 65 + 6\sqrt{14} \right)\left( 65 - 6\sqrt{14} \right)} =\]
\[= \sqrt{4225 - 504} = \sqrt{3721} = 61;\]
\[A^{2} = (x + y)^{2} = x^{2} + 2xy +\]
\[+ y^{2} = 130 + 2 \cdot 61 = 252\]
\[A = \sqrt{252} = 6\sqrt{7}.\]
\[Ответ:6\sqrt{7}.\]