\[\boxed{\mathbf{502}.}\]
\[x = \sqrt[3]{4\sqrt{5} + 4} - \sqrt[3]{4\sqrt{5} - 4\ }\]
\[Пусть\ \ \ a = \sqrt[3]{4\sqrt{5} + 4};\ \]
\[\ \ b = \sqrt[3]{4\sqrt{5} - 4}.\]
\[Получаем:\]
\[a \cdot b = \sqrt[3]{\left( 4\sqrt{5} + 4 \right)\left( 4\sqrt{5} - 4 \right)} =\]
\[= \sqrt[3]{16 \cdot 5 - 16} = \sqrt[3]{64} = 4.\]
\[a^{3} - b^{3} = 4\sqrt{5} + 4 -\]
\[- 4\sqrt{5} + 4 = 8.\]
\[x^{2} = (a - b)^{2} = a^{2} -\]
\[- 2ab + b^{2} = a^{2} + b^{2} - 8\]
\[a^{2} + b^{2} = x^{2} + 8.\]
\[a^{3} - b^{3} =\]
\[= (a - b)\left( a^{2} + ab + b^{2} \right) =\]
\[= x\left( x^{2} + 8 + 4 \right) = x^{3} + 12x\]
\[x^{3} + 12x = - 8.\]
\[Ответ:\ - 8.\]