\[\boxed{\mathbf{454}.}\]
\[1)\ \sqrt{9 + \sqrt{17}} \bullet \sqrt{9 - \sqrt{17}} =\]
\[= \sqrt{\left( 9 + \sqrt{17} \right)\left( 9 - \sqrt{17} \right)} =\]
\[= \sqrt{(9^{2} - \left( \sqrt{17} \right)^{2}} =\]
\[= \sqrt{81 - 17} = \sqrt{64} = 8;\]
\[2)\ \left( \sqrt{3 + \sqrt{5}} - \sqrt{3 - \sqrt{5}} \right)^{2} =\]
\[= \left( 3 + \sqrt{5} \right) - 2\sqrt{3 + \sqrt{5}} \bullet\]
\[\bullet \sqrt{3 - \sqrt{5}} + \left( 3 - \sqrt{5} \right) =\]
\[= 3 + \sqrt{5} + 3 - \sqrt{5} -\]
\[- 2\sqrt{\left( 3 + \sqrt{5} \right)\left( 3 - \sqrt{5} \right)} =\]
\[= 6 - 2\sqrt{9 - 5} = 6 - 2\sqrt{4} =\]
\[= 6 - 2 \bullet 2 = 6 - 4 = 2;\]
\[3)\ \left( \sqrt{5 + \sqrt{21}} + \sqrt{5 - \sqrt{21}} \right)^{2} =\]
\[= \left( 5 + \sqrt{21} \right) + 2\sqrt{5 + \sqrt{21}} \bullet\]
\[\bullet \sqrt{5 - \sqrt{21}} + \left( 5 - \sqrt{21} \right) =\]
\[= 5 + \sqrt{21} + 5 - \sqrt{21} +\]
\[+ 2\sqrt{\left( 5 + \sqrt{21} \right)\left( 5 - \sqrt{21} \right)} =\]
\[= 10 + 2\sqrt{25 - 21} =\]
\[= 10 + 2\sqrt{4} = 10 + 2 \bullet 2 =\]
\[= 10 + 4 = 14.\]