\[\boxed{\mathbf{431}.}\]
\[b_{2} = 6;\ \]
\[\ S = \frac{1}{8} \cdot \underset{S_{кв}}{\overset{\left( b_{1}^{2} + b_{2}^{2} + \ldots + b_{n}^{2} \right)}{︸}}\]
\[S_{кв} = \frac{b_{1}^{2}}{1 - q²} \rightarrow \frac{S_{кв}}{S} = 8.\]
\[\frac{b_{1}^{2}}{1 - q^{2}}\ :\frac{b_{1}}{1 - q} =\]
\[= \frac{b_{1}^{2}(1 - q)}{(1 - q)(1 + q) \cdot b_{1}} =\]
\[= \frac{b_{1}}{1 + q} = 8\]
\[b_{1} = 8 \cdot (1 + q);\ \ \ \]
\[b_{2} = b_{1} \cdot q \rightarrow b_{1} = \frac{b_{2}}{q} = \frac{6}{q}.\]
\[8 \cdot (1 + q) = \frac{6}{q}\]
\[4q(1 + q) = 3\]
\[4q^{2} + 4q - 3 = 0\]
\[D_{1} = 4 + 12 = 16\]
\[q_{1} = \frac{- 2 + 4}{4} = \frac{1}{2};\ \]
\[\text{\ \ }q_{2} = \frac{- 2 - 4}{4} =\]
\[= - 1,5\ (не\ подходит).\]
\[b_{1} = 6\ :\frac{1}{2} = 12.\]
\[Ответ:b_{1} = 12;\ \ q = \frac{1}{2}.\]