\[\boxed{\mathbf{421}.}\]
\[1)\ \lim_{n \rightarrow \infty}\frac{1}{10^{n + 1}} = \lim_{n \rightarrow \infty}\frac{1}{10^{n} \cdot 10} =\]
\[= \frac{1}{10} \cdot \lim_{n \rightarrow \infty}\frac{1}{10^{n}} = \frac{1}{10} \cdot 0 = 0.\]
\[2)\ \lim_{n \rightarrow \infty}(0,7)^{n} = \lim_{n \rightarrow \infty}\left( \frac{7}{10} \right)^{n} =\]
\[= 7^{n} \cdot \lim_{n \rightarrow \infty}\frac{1}{10^{n}} = 7^{n} \cdot 0 = 0.\]