Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 414

Авторы:
Тип:учебник

Задание 414

\[\boxed{\mathbf{414}.}\]

\[1)\ \lim_{n \rightarrow \infty}\frac{1}{4^{n}} = \lim_{n \rightarrow \infty}\left( \frac{1}{4} \right)^{n} = 0;\]

\[2)\ \lim_{n \rightarrow \infty}(0,2)^{n} = 0;\]

\[3)\ \lim_{n \rightarrow \infty}\frac{5}{7^{n - 1}} = 35\lim_{n \rightarrow \infty}\frac{1}{7^{n}} = 0;\]

\[4)\ \lim_{n \rightarrow \infty}\frac{6}{7 \cdot 5^{n}} = \frac{6}{7}\lim_{n \rightarrow \infty}\frac{1}{5^{n}} = 0.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам