\[\boxed{\mathbf{398}.}\]
\[1)\ P(x) = x^{3} - 5x^{2} + 6x - 7;\ \ \]
\[c = 2.\]
\[1\] | \[- 5\] | \[6\] | \[- 7\] | |
---|---|---|---|---|
\[2\] | \[1\] | \[- 3\] | \[0\] | \[- 7\] |
\[2\] | \[1\] | \[- 1\] | \[- 2\] |
\[P(x) = (x - 2)\left( x^{2} - 3x \right) - 7;\]
\[P(x) =\]
\[= (x - 2)((x - 2)(x - 1) - 2));\]
\[P(x) = (x - 2)\left( (x - 2)\left( (x - 2) + 1 \right) - 2 \right) - 7 =\]
\[= (x - 2)^{3} + (x - 2)^{2} -\]
\[- 2 \cdot (x - 2) - 7.\]
\[2)\ P(x) = x^{4} - 8x^{3} - 17x^{2} - 5;\ \]
\[\ c = - 2:\]
\[1\] | \[- 8\] | \[- 17\] | \[0\] | \[- 5\] | |
---|---|---|---|---|---|
\[- 2\] | \[1\] | \[- 10\] | \[3\] | \[- 6\] | \[7\] |
\[P(x) = (x + 2)\left( x^{3} - 10x^{2} + 3x - 6 \right) + 7.\]
\[1\] | \[- 10\] | \[3\] | \[- 6\] | |
---|---|---|---|---|
\[- 2\] | \[1\] | \[- 12\] | \[27\] | \[- 60\] |
\[P(x) = (x + 2)\left( (x + 2)\left( x^{2} - 12x + 27 \right) - 60 \right).\]
\[1\] | \[- 12\] | \[27\] | ||
---|---|---|---|---|
\[- 2\] | \[1\] | \[- 14\] | \[55\] |
\[P(x) = (x + 2)(x - 14) + 55.\]