\[\boxed{\mathbf{392}.}\]
\[1)\ \left\{ \begin{matrix} x - xy = 0\ \ \ \\ y^{2} + 3xy = 4 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} x(1 - y) = 0 \\ y^{2} + 3xy = 4 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 0\ \ \ \\ y^{2} = 4\ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x = 0\ \ \ \\ y = \pm 2 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 1 - y = 0\ \ \ \ \ \ \ \\ y^{2} + 3xy = 4 \\ \end{matrix} \right.\ \ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y = 1\ \ \\ 3x = 3 \\ \end{matrix} \right.\ \ \Longrightarrow \left\{ \begin{matrix} y = 1 \\ x = 1 \\ \end{matrix} \right.\ \]
\[Ответ:(0;\ - 2);(0;2);(1;1).\]
\[2)\ \left\{ \begin{matrix} x^{2} - y = 0\ \ \ \ \\ x^{2} + y^{2} = 5y \\ \end{matrix} \right.\ \ ( - )\]
\[y^{2} + y = 5y\]
\[y^{2} - 4y = 0\]
\[y(y - 4) = 0\]
\[y = 0;\ \ \ y = 4.\]
\[\ \left\{ \begin{matrix} y = 0\ \ \ \\ x^{2} = y \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} y = 0 \\ x = 0 \\ \end{matrix} \right.\ ;\]
\(\left\{ \begin{matrix} y = 4\ \\ x^{2} = 4 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\left\{ \begin{matrix} y = 4\ \ \ \\ x = \pm 2 \\ \end{matrix} \right.\ \)
\[Ответ:(0;0);(2;4);(2;\ - 4).\]
\[3)\ \left\{ \begin{matrix} xy + x - 3y = 3 \\ x^{2} + y^{2} = 10\ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[xy + x - 3y = 3\]
\[x(y + 1) = 3y + 3\]
\[x = \frac{3y + 3}{y + 1}.\]
\[\left\{ \begin{matrix} x = \frac{3y + 3}{y + 1}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \frac{(3 + 3y)^{2}}{(y + 1)^{2}} + y^{2} = 10 \\ \end{matrix} \right.\ \]
\[9 + 18y + 9y^{2} + y^{2}(y + 1)^{2} =\]
\[= 10 \cdot (y + 1)^{2}\]
\[9 + 18y + 9y^{2} +\]
\[+ y^{2}\left( y^{2} - 2y + 1 \right) =\]
\[= 10 \cdot \left( y^{2} + 2y + 1 \right)\]
\[y^{4} + 2y^{3} + y^{2} + 9 + 18y +\]
\[+ 9y^{2} - 10y^{2} - 20y - 10 = 0\]
\[y^{4} + 2y^{3} - 2y - 1 = 0\]
\[1\] | \[2\] | \[0\] | \[- 2\] | \[- 1\] | |
---|---|---|---|---|---|
\[1\] | \[1\] | \[3\] | \[3\] | \[1\] | \[0\] |
\[- 1\] | \[1\] | \[2\] | \[1\] | \[0\] |
\[(y - 1)(y + 1)\left( y^{2} + 2y + 1 \right) = 0\]
\[(y - 1)(y + 1)(y + 1)^{2} = 0\]
\[(y - 1)(y + 1)^{3} = 0\]
\[y = \pm 1:\]
\[y^{2} = 1.\]
\[x^{2} = 10 - 1 = 9\]
\[x = \pm 3.\]
\[Ответ:(3;1);(3;\ - 1);\]
\[( - 3;1);( - 3;\ - 1).\]
\[4)\ \left\{ \begin{matrix} x + y + xy = 11\ \\ x^{2}y + xy^{2} = 30 \\ \end{matrix} \right.\ \]
\[x + y + xy = 11\]
\[x(1 + y) = 11 - y\]
\[x = \frac{11 - y}{1 + y}.\]
\[Подставим\ во\ второе\]
\[\ уравнение:\]
\[\left( \frac{11 - y}{1 + y} \right)^{2} \cdot y + \frac{11 - y}{1 + y} \cdot y^{2} = 30\]
\[\left( 121 - 22y + y^{2} \right)y +\]
\[+ \left( 11y^{2} - y^{3} \right)(1 + y) =\]
\[= 30 \cdot (1 + y)^{2}\ \]
\[121y - 22y^{2} + y^{3} + 11y^{2} -\]
\[- y^{3} + 11y^{3} - y^{4} = 30 +\]
\[+ 60y + 30y^{2}\]
\[y^{4} - 11y^{3} + 41y^{2} -\]
\[- 61y + 30 = 0\]
\[Делители:\ \pm 1;\ \pm 2;\ \pm 3;\ \pm 5;\ \]
\[\pm 6;\ \pm 10;\ \pm 15;\ \pm 30.\]
\[1\] | \[- 11\] | \[41\] | \[- 61\] | \[30\] | |
---|---|---|---|---|---|
\[1\] | \[1\] | \[- 10\] | \[31\] | \[- 30\] | \[0\] |
\[2\] | \[1\] | \[- 8\] | \[15\] | \[0\] | |
\[3\] | \[1\] | \[- 5\] | \[0\] |
\[P(y) = (y - 1)(y - 2)(y - 3)(y - 5) = 0.\]
\[y = 1 \Longrightarrow x = 5;\]
\[y = 2 \Longrightarrow x = 3;\]
\[y = 3 \Longrightarrow x = 2;\]
\[y = 5 \Longrightarrow x = 1.\]
\[Ответ:(5;1);(3;2);(2;3);(1;5).\]