Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 391

Авторы:
Тип:учебник

Задание 391

\[\boxed{\mathbf{391}.}\]

\[1)\ \frac{x^{2}}{x + 2} + \frac{2x^{2}(x - 2)}{x - 3} =\]

\[= \frac{3x^{2} + 19x + 6}{x^{2} - x - 6}\text{\ \ }\]

\[\ | \cdot (x + 2)(x - 3)\]

\[x^{2} - x - 6 = (x + 2)(x - 3)\]

\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 6\]

\[x_{1} = 3;\ \ x_{2} = - 2.\]

\[ОДЗ:\ \ x \neq - 2;\ \ x \neq 3.\]

\[x^{2}(x - 3) +\]

\[+ 2x^{2}(x - 2)(x + 2) =\]

\[= 3x^{2} + 19x + 6\]

\[x^{3} - 3x^{2} + 2x^{4} - 8x^{2} - 3x^{2} -\]

\[- 19x - 6 = 0\]

\[2x^{4} + x^{3} - 14x^{2} - 19x - 6 = 0\]

\[Делители:\ \pm 1;\ \pm 2;\ \pm 3;\ \pm 6.\]

\[2\] \[1\] \[- 14\] \[- 19\] \[- 6\]
\[- 2\] \[2\] \[- 3\] \[- 8\] \[- 3\] \[0\]
\[- 1\] \[2\] \[- 5\] \[- 3\] \[0\]

\[P(x) = (x + 2)(x + 1)\left( 2x^{2} - 5x - 3 \right) = 0.\]

\[2x^{2} - 5x - 3 = 0\]

\[D = 25 + 24 = 49\]

\[x_{1} = \frac{5 + 7}{4} =\]

\[= 3\ (не\ подъодит\ по\ ОДЗ);\ \ \]

\[x_{2} = \frac{5 - 7}{4} = - 0,5.\]

\[Ответ:x = - 1;\ \ x = - 0,5.\]

\[2)\ \frac{2x^{3}}{x + 2} + \frac{x^{2}}{x - 1} =\]

\[= \frac{8x^{2} - 7x + 2}{x^{2} + x - 2}\text{\ \ \ \ \ }\]

\[| \cdot (x + 2)(x - 1)\]

\[x^{2} + x - 2 = (x + 2)(x - 1)\]

\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 2\]

\[x_{1} = - 2;\ \ x_{3} = 1.\]

\[ОДЗ:\ \ x = 1;\ \ x \neq - 2.\]

\[2x^{3}(x - 1) + x^{2}(x + 2) =\]

\[= 8x^{2} - 7x + 2\]

\[2x^{4} - 2x^{3} + x^{3} + 2x^{2} -\]

\[- 8x^{2} + 7x - 2 = 0\]

\[2x^{4} - x^{3} - 6x^{2} + 7x - 2 = 0\]

\[Делители:\ \pm 1;\ \pm 2.\]

\[2\] \[- 1\] \[- 6\] \[7\] \[- 2\]
\[- 2\] \[2\] \[- 5\] \[4\] \[- 1\] \[0\]
\[1\] \[2\] \[- 3\] \[1\] \[0\]
\[0,5\] \[2\] \[- 2\] \[0\]

\[P(x) = (x + 2)(x - 1)(x - 0,5)(2x - 2) = 0\]

\[2x - 2 = 0\]

\[x = 1.\]

\[Ответ:x = 0,2.\]

\[3)\ \frac{2x^{3} + 1}{2x + 1} + \frac{3x^{2}}{3x - 1} =\]

\[= \frac{15x^{3}}{6x^{2} + x - 1}\text{\ \ \ \ \ }\]

\[\ | \cdot (2x + 1)(3x - 1)\]

\[6x^{2} + x - 1 =\]

\[= 6 \cdot \left( x + \frac{1}{2} \right)\left( x - \frac{1}{3} \right) =\]

\[= (2x + 1)(3x - 1)\]

\[D = 1 + 24 = 25\]

\[x_{1} = \frac{- 1 + 5}{12} = \frac{1}{3};\ \ \ \]

\[x_{2} = \frac{- 1 - 5}{12} = - \frac{1}{2}.\]

\[ОДЗ:\ \ x \neq \frac{1}{3};\ \ x \neq \ - \frac{1}{2}.\]

\[\left( 2x^{3} + 1 \right)(3x - 1) +\]

\[+ 3x^{2}(2x + 1) = 15x^{3}\]

\[6x^{4} + 3x - 2x^{3} - 1 + 6x^{3} +\]

\[+ 3x^{2} - 15x^{3} = 0\]

\[6x^{4} - 11x^{3} + 3x^{2} + 3x - 1 = 0\]

\[Делители:\ \pm 1.\]

\[6\] \[- 11\] \[3\] \[3\] \[- 1\]
\[1\] \[6\] \[- 5\] \[- 2\] \[1\] \[0\]
\[1\] \[6\] \[1\] \[- 1\] \[0\]

\[P(x) =\]

\[= (x - 1)^{2}\left( 6x^{2} + x - 1 \right) = 0\]

\[6x^{2} + x - 1 \neq 0\ (по\ ОДЗ).\]

\[Ответ:x = 1.\]

\[4)\ \frac{6x^{3}}{x + 1} + \frac{5x^{2} - 17x + 2}{x - 2} =\]

\[= \frac{18x}{2 + x - x^{2}}\]

\[\frac{6x^{3}}{x + 1} + \frac{5x^{2} - 17x + 2}{x - 2} =\]

\[= - \frac{18x}{(x + 1)(x - 2)}\text{\ \ \ }\]

\[\ | \cdot (x + 1)(x - 2)\]

\[2 + x - x^{2} = 0\]

\[x^{2} - x - 2 = - (x + 1)(x - 2)\]

\[x_{1} + x_{2} = 1;\ \ \ x_{1} \cdot x_{2} = - 2\]

\[x_{1} = 2;\ \ \ x_{2} = - 1.\]

\[ОДЗ:\ \ \text{\ x} \neq - 1;x \neq 2.\]

\[6x^{3}(x - 2) +\]

\[+ \left( 5x^{2} - 17x + 2 \right)(x + 1) +\]

\[+ 18x = 0\]

\[6x^{4} - 12x^{3} + 5x^{3} + 5x^{2} -\]

\[- 17x^{2} - 17x + 2x +\]

\[+ 2 + 18x = 0\]

\[6x^{4} - 7x^{3} - 12x^{2} + 3x + 2 = 0\]

\[Делители:\ \pm 1;\ \pm \frac{1}{2};\ \pm \frac{1}{3}.\]

\[6\] \[- 7\] \[- 12\] \[3\] \[2\]
\[- 1\] \[6\] \[- 13\] \[1\] \[2\] \[0\]
\[\frac{1}{2}\] \[6\] \[- 10\] \[- 4\] \[0\]
\[- \frac{1}{3}\] \[6\] \[- 12\] \[0\]

\[P(x) = (x + 1)\left( x - \frac{1}{2} \right)\left( x + \frac{1}{3} \right)(6x - 12) = 0.\]

\[6x - 12 = 0\]

\[x = 2\ (не\ подходит\ по\ ОДЗ).\]

\[Ответ:x = - \frac{1}{3};\ \frac{1}{2}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам