\[\boxed{\mathbf{39}.}\]
\[1)\ \left\{ \begin{matrix} 5x + ay = 40\ \ | \cdot 2 \\ 2x + 3y = 4a\ \ | \cdot 5 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\ \left\{ \begin{matrix} 10x + 2ay = 80\ \ \\ 10x + 15y = 20a \\ \end{matrix} \right.\ ( - )\]
\[2ay - 15y = 80 - 20a\]
\[y(2a - 15) = 80 - 20a\]
\[y = \frac{80 - 20a}{2a - 15}\]
\[2a - 15 \neq 0\]
\[2a \neq 15\]
\[a \neq 7,5.\]
\[Ответ:при\ a = 7,5.\]
\[2)\ \left\{ \begin{matrix} 2x - 3ay = 5a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 3x - (5a - 1)y = 7a + 1 \\ \end{matrix} \right.\ \text{\ \ }\]
\[\ \left\{ \begin{matrix} 2x - 3ay = 5a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \cdot 3 \\ 3x - 5ay + y = 7a + 1\ \ | \cdot 2 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 6x - 9ay = 15a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 6x - 10ay + 2y = 14a + 2 \\ \end{matrix} \right.\ ( - )\]
\[ay - 2y = a - 2\]
\[y(a - 2) = a - 2\]
\[y = \frac{a - 2}{a - 2} = 1;\ \ \ a \neq 2.\]
\[Ответ:при\ a = 2.\]