\[\boxed{\mathbf{385}.}\]
\[P(x) = x^{3} + ax^{2} + bx - 2 = 0;\ \ \]
\[x_{1} = 1 + \sqrt{3};\ \ x_{2} = 1 - \sqrt{3}\]
\[P\left( 1 + \sqrt{3} \right) = \left( 1 + \sqrt{3} \right)^{3} +\]
\[+ a\left( 1 + \sqrt{3} \right)^{2} +\]
\[+ b\left( 1 + \sqrt{3} \right) - 2 = 0\]
\[1 + 3\sqrt{3} + 9 + 3\sqrt{3} + a +\]
\[+ 2a\sqrt{3} + 3a + b + b\sqrt{3} - 2 = 0\]
\[\left( 4 + 2\sqrt{3} \right)a + \left( 1 + \sqrt{3} \right)b +\]
\[+ 6\sqrt{3} + 8 = 0.\]
\[P\left( 1 - \sqrt{3} \right) = \left( 1 - \sqrt{3} \right)^{3} +\]
\[+ a\left( 1 - \sqrt{3} \right)^{2} + b\left( 1 - \sqrt{3} \right) -\]
\[- 2 = 0\]
\[1 - 3\sqrt{3} + 9 - 3\sqrt{3} + a -\]
\[- 2a\sqrt{3} + 3a +\]
\[+ \left( 1 - \sqrt{3} \right)b - 2 = 0\]
\[\left( 4 - 2\sqrt{3} \right)a + \left( 1 - \sqrt{3} \right)b -\]
\[- 6\sqrt{3} + 8 = 0.\]
\[8a + 2b + 16 = 0\]
\[b = - 8 - 4a:\]
\[\left( 4 + 2\sqrt{3} \right)a +\]
\[+ \left( 1 + \sqrt{3} \right)( - 8 - 4a) +\]
\[+ 6\sqrt{3} + 8 = 0\]
\[4a + 2\sqrt{3}a - 8 - 8\sqrt{3} - 4a -\]
\[- 4a\sqrt{3} + 6\sqrt{3} + 8 = 0\]
\[- 2\sqrt{3}a - 2\sqrt{3} = 0\]
\[a = - 1.\]
\[b = - 8 - 4 \cdot ( - 1) = - 4.\]
\[Получили:\]
\[x^{3} - x^{2} - 4x - 2 = 0\]
\[\left( x - 1 - \sqrt{3} \right)\left( x - 1 + \sqrt{3} \right) =\]
\[= x^{2} - 2x - 2.\]
\[Ответ:x = - 1;\ \ a = - 1;\]
\[b = - 4.\]