\[\boxed{\mathbf{375}.}\]
\[\left\{ \begin{matrix} x^{2} - 6x - 3y - 1 = 0\ \ \ \\ y^{2} + 2x + 9y + 14 = 0 \\ \end{matrix} \right.\ \]
\[3y = x^{2} - 6x - 1\]
\[y = \frac{x^{2} - 6x - 1}{3}\]
\[\left( \frac{x^{2} - 6x - 1}{3} \right)^{2} + 2x +\]
\[+ 3 \cdot \left( x^{2} - 6x - 1 \right) +\]
\[+ 14 = 0\ \ \ | \cdot 9\]
\[\left( x^{2} - (6x + 1) \right)^{2} + 18x +\]
\[+ 27x^{2} - 162x - 27 + 126 = 0\]
\[x^{4} - 12x^{3} + 61x^{2} -\]
\[- 132x + 100 = 0\]
\[1\] | \[- 12\] | \[61\] | \[- 132\] | \[100\] | |
---|---|---|---|---|---|
\[2\] | \[1\] | \[- 10\] | \[41\] | \[- 50\] | \[0\] |
\[2\] | \[1\] | \[- 8\] | \[25\] | \[0\] |
\[P(x) =\]
\[= (x - 2)^{2}\left( x^{2} - 8x + 25 \right) = 0\]
\[x^{2} - 8x + 25 = 0\]
\[D_{1} = 16 - 25 < 0\]
\[нет\ корней.\]
\[x = 2:\]
\[y = \frac{4 - 12 - 1}{3} = - \frac{9}{3} = - 3.\]
\[Ответ:(2;\ - 3).\]