\[\boxed{\mathbf{368}.}\]
\[1)\ \left\{ \begin{matrix} (x - y)\left( x^{2} + y^{2} \right) = 65 \\ (x + y)\left( x^{2} - y^{2} \right) = 5\ \ \ \\ \end{matrix} \right.\ \ (\ :)\]
\[\frac{(x - y)\left( x^{2} + y^{2} \right)}{(x + y)\left( x^{2} - y^{2} \right)} = 13\]
\[\frac{x^{2} + y^{2}}{(x + y)^{2}} = 13\]
\[x^{2} + y^{2} = 13 \cdot (x + y)^{2}\]
\[x^{2} + y^{2} = 13x^{2} + 26xy + 13y^{2}\]
\[12x^{2} + 26xy + 12y^{2} = 0\]
\[D_{1} = 169y^{2} - 144y^{2} = 25y^{2}\]
\[x_{1} = \frac{- 13y + 5y}{12} = - \frac{8y}{12} = - \frac{2y}{3};\]
\[x_{2} = \frac{- 13y - 5y}{12} = - \frac{18y}{12} =\]
\[= - \frac{3y}{2}.\]
\[1)\ x = - \frac{2y}{3}:\]
\[\left( - \frac{2y}{3} + y \right)\left( \frac{4y^{2}}{9} - y^{2} \right) = 5\]
\[\frac{y}{3} \cdot \left( - \frac{5y^{2}}{9} \right) = 5\ \ \ \ \ \ \ | \cdot \frac{27}{5}\]
\[- y^{3} = 27\]
\[y^{3} = - 27\]
\[y = - 3.\]
\[x = - \frac{2 \cdot ( - 3)}{3} = 2.\]
\[2)\ x = - \frac{3y}{2}:\]
\[\left( - \frac{3y}{2} + y \right)\left( \frac{9}{4}y^{2} - y^{2} \right) = 5\]
\[- \frac{y}{2} \cdot \frac{5y^{2}}{4} = 5\ \ \ \ | \cdot \left( - \frac{8}{5} \right)\]
\[y^{3} = - 8\]
\[y = - 2.\]
\[x = - \frac{3y}{2} = 3.\]
\[Ответ:(2;\ - 3);(3; - 2).\]
\[2)\ \left\{ \begin{matrix} x^{3} + 4y = y^{3} + 16x \\ 1 + y^{2} = 5 \cdot \left( 1 + x^{2} \right) \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y^{3} - 4y = x^{3} - 16x \\ y^{2} - 4 = 5x^{2}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} y\left( y^{2} - 4 \right) = x\left( x^{2} - 16 \right) \\ \left( y^{2} - 4 \right) = 5x^{2}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \ (\ :)\text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = \frac{x^{2} - 16}{5x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ 1 + \left( \frac{x^{2} - 16}{5x} \right)^{2} = 5 + 5x^{2} \\ \end{matrix} \right.\ \]
\[\frac{\left( x^{2} - 16 \right)^{2}}{25x^{2}} = 5x^{2} + 4\]
\[x^{4} - 32x^{2} + 256 =\]
\[= 125x^{4} + 100x^{2}\]
\[124x^{4} + 132x^{2} - 256 = 0\ \ \ \ |\ :4\]
\[31x^{4} + 33x^{2} - 64 = 0\]
\[{x^{2} = t \geq 0: }{31t^{2} + 33t - 64 = 0}\]
\[D = 1089 + 7936 = 9025\]
\[t_{1} = \frac{- 33 + 95}{62} = 1;\ \ \]
\[\ t_{2} = \frac{- 33 - 95}{62} =\]
\[= - \frac{128}{62}\ (не\ подходит).\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[x = 1:\]
\[y = \frac{1 - 16}{5} = - 3.\]
\[x = - 1:\]
\[y = \frac{1 - 16}{- 5} = 3.\]
\[Ответ:(1;\ - 3);( - 1;3).\]