\[\boxed{\mathbf{367}.}\]
\[1)\ \left\{ \begin{matrix} \frac{x^{3}}{y} + xy = 10 \\ \frac{y^{3}}{x} + xy = \frac{5}{2}\text{\ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} \frac{x^{3}}{y} = 10 - xy \\ \frac{y^{3}}{x} = \frac{5}{2} - xy\ \ \\ \end{matrix} \right.\ (*)\]
\[\frac{x^{3}}{y} \cdot \frac{y^{3}}{x} = (10 - xy)\left( \frac{5}{2} - xy \right)\]
\[x^{2} \cdot y^{2} = 25 - \frac{5}{2}xy -\]
\[- 10xy + x^{2}y^{2}\]
\[\frac{25}{2}xy = 25\ \ \ \ \ \ | \cdot \frac{2}{25}\]
\[xy = 2\]
\[y = \frac{2}{x}.\]
\[1)\ xy = 2;\ \ y = \frac{2}{x}:\]
\[\frac{x^{3}}{y} + xy = 10\]
\[\frac{x^{4}}{2} + 2 = 10\]
\[\frac{x^{4}}{2} = 8\]
\[x^{4} = 16\]
\[x = \pm 2.\]
\[2)\ x = 2;\ \ y = \frac{2}{x} = 1;\]
\[x = - 2;\ \ \ \ y = \frac{2}{x} = - 1.\]
\[Ответ:( - 2;\ - 1);(2;1).\]
\[2)\ \left\{ \begin{matrix} \frac{x^{3}}{y} + xy = 5\ \ \\ \frac{y^{3}}{x} + xy = \frac{10}{3} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} \frac{x^{3}}{y} = 5 - xy\ \ \\ \frac{y^{3}}{x} = \frac{10}{3} - xy \\ \end{matrix} \right.\ (*)\]
\[\frac{x^{3}}{y} \cdot \frac{y^{3}}{x} = (5 - xy)\left( \frac{10}{3} - xy \right)\]
\[x^{2} \cdot y^{2} = \frac{50}{3} - \frac{10}{3}xy -\]
\[- 5xy + x^{2}y^{2}\]
\[\frac{25}{3}xy = \frac{50}{3}\ \ \ \ \ \ | \cdot \frac{3}{25}\]
\[xy = 2\]
\[y = \frac{2}{x}.\]
\[1)\ y = \frac{2}{x};\ \ \ xy = 2:\]
\[\ \frac{x^{3}}{y} + xy = 5\]
\[\frac{x^{4}}{2} + 2 = 5\]
\[\frac{x^{4}}{2} = 3\]
\[x^{4} = 6\]
\[x = \pm \sqrt[4]{6}.\]
\[2)\ x = \sqrt[4]{6};\ \ y = \frac{2}{\sqrt[4]{6}} = \frac{\sqrt[4]{6}}{3};\]
\[x = - \sqrt[4]{6};\ \ y = - \frac{2}{\sqrt[4]{6}} = - \frac{\sqrt[4]{6}}{3}.\]
\[Ответ:\left( \sqrt[4]{6};\frac{\sqrt[4]{6}}{3} \right);\ \ \]
\[\left( - \sqrt[4]{6}; - \frac{\sqrt[4]{6}}{3} \right)\text{.\ }\]