\[\boxed{\mathbf{362}.}\]
\[1)\ \left\{ \begin{matrix} x - y = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{4} - 3yx^{2} - 4y^{2} = 0 \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\ \left\{ \begin{matrix} y = x - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{4} - 3x^{2}(x - 2) - 4 \cdot (x - 2)^{2} = 0 \\ \end{matrix} \right.\ \]
\[x^{4} - 3x^{3} + 6x^{2} - 4x^{2} +\]
\[+ 16x - 16 = 0\]
\[x^{4} - 3x^{3} + 2x^{2} + 16x - 16 = 0\]
\[\left( x^{2} + x - 2 \right)\left( x^{2} - 4x + 8 \right) = 0\]
\[(x - 1)(x + 2)\left( x^{2} - 4x + 8 \right) = 0\]
\[x^{2} - 4x + 8 = 0\]
\[D_{1} = 4 - 8 = - 4 < 0\]
\[нет\ корней.\]
\[x = 1:\]
\[y = 1 - 2 = - 1;\]
\[x = - 2:\]
\[y = - 2 - 2 = - 4.\]
\[Ответ:(1;\ - 1);( - 2;\ - 4).\]
\[2)\ \left\{ \begin{matrix} x + y = - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x^{4} - 5x^{2}y + 3y^{2} = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = 2 - x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x^{4} - 5x^{2}(2 - x) + 3 \cdot (2 - x)^{2} = 0 \\ \end{matrix} \right.\ \]
\[2x^{4} - 10x^{2} + 5x^{3} + 12 -\]
\[- 12x + 3x^{2} = 0\]
\[2x^{4} + 5x^{3} - 7x^{2} -\]
\[- 12x + 12 = 0\]
\[(x - 1)(x + 2)\left( 2x^{2} + 3x - 6 \right) =\]
\[= 0\]
\[2x^{2} + 3x - 6 = 0\]
\[D = 9 + 48 = 57\]
\[x = \frac{- 3 \pm \sqrt{57}}{4}.\]
\[x = 1:\]
\[y = 2 - 1 = 1.\]
\[x = - 2:\]
\[y = 2 + 2 = 4.\]
\[x = \frac{- 3 + \sqrt{57}}{4}:\]
\[y = 2 - \frac{- 3 + \sqrt{57}}{4} = \frac{11 - \sqrt{57}}{4}.\]
\[x = \frac{- 3 - \sqrt{57}}{4}:\]
\[y = 2 + \frac{3 + \sqrt{57}}{4} = \frac{11 + \sqrt{57}}{4}.\]
\[Ответ:(1;1);( - 2;4);\]
\[\left( \frac{- 3 + \sqrt{57}}{4};\ \frac{11 - \sqrt{57}}{4} \right);\]
\[\left( \frac{- 3 - \sqrt{57}}{4};\frac{11 + \sqrt{57}}{4} \right).\]