Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 361

Авторы:
Тип:учебник

Задание 361

\[\boxed{\mathbf{361}.}\]

\[1)\ \left\{ \begin{matrix} y - x = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{3} - 4xy + 5y = - 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\text{\ \ }\left\{ \begin{matrix} y = x + 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{3} - 4x(x + 1) + 5 \cdot (x + 1) = - 1 \\ \end{matrix} \right.\ \]

\[x^{3} - 4x^{2} - 4x + 5x + 5 + 1 = 0\]

\[x^{3} - 4x^{2} + x + 6 = 0\]

\[1\] \[- 4\] \[1\] \[6\]
\[- 1\] \[1\] \[- 5\] \[6\] \[0\]
\[2\] \[1\] \[- 3\] \[0\]

\[(x + 1)(x - 2)(x - 3) = 0\]

\[x_{1} = - 1;\ \ \ y_{1} = - 1 + 1 = 0;\]

\[x_{2} = 2;\ \ \ \ \ \ y_{2} = 2 + 1 = 3;\]

\[x_{3} = 3;\ \ \ \ \ \ y_{3} = 3 + 1 = 4.\]

\[Ответ:( - 1;0);(2;3);(3;4).\]

\[2)\ \left\{ \begin{matrix} x - y = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x^{3} + 9xy + 25y + 44 = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]

\[\left\{ \begin{matrix} y = x - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x^{3} + 9x(x - 2) + 25 \cdot (x - 2) + 44 = 0 \\ \end{matrix} \right.\ \]

\[2x^{3} + 9x^{2} - 18x + 25x -\]

\[- 50 + 44 = 0\]

\[2x^{3} + 9x^{2} + 7x - 6 = 0\]

\[(x + 2)(x + 3)(2x - 1) = 0\]

\[2\] \[9\] \[7\] \[- 6\]
\[- 2\] \[2\] \[5\] \[- 3\] \[0\]
\[- 3\] \[2\] \[- 1\] \[0\]

\[x = - 2:\]

\[y = - 2 - 2 = - 4.\]

\[x = - 3:\]

\[y = - 2 - 3 = - 5.\]

\[x = 0,5:\]

\[y = 0,5 - 2 = - 1,5.\]

\[Ответ:( - 2; - 4);( - 3;\ - 5);\]

\[(0,5; - 1,5).\]

\[3)\ \left\{ \begin{matrix} x - y = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 6x^{2}y + xy - y = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} y = x - 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 6x^{2}(x - 1) + x(x - 1) - (x - 1) = 0 \\ \end{matrix} \right.\ \]

\[(x - 1)\left( 6x^{2} + x - 1 \right) = 0\]

\[6x^{2} + x - 1 = 0\]

\[D = 1 + 24 = 25\]

\[x_{1} = \frac{- 1 + 5}{12} = \frac{1}{3};\ \ \]

\[\ x_{2} = \frac{- 1 - 5}{12} = - \frac{1}{2} = - 0,5.\]

\[x = 1:\]

\[y = 1 - 1 = 0.\]

\[x = \frac{1}{3}:\]

\[y = \frac{1}{3} - 1 = - \frac{2}{3}.\]

\[x = - 0,5:\]

\[y = - 0,5 - 1 = - 1,5.\]

\[Ответ:\left( \frac{1}{3}; - \frac{2}{3} \right);( - 0,5;\ - 1,5);\]

\[(1;0).\]

\[4)\ \left\{ \begin{matrix} y - x = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x^{3}y + 9x^{2}y - 5xy = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} y = x + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x^{3}(x + 2) + 9x^{2}(x + 2) - 5x(x + 2) = 0 \\ \end{matrix} \right.\ \]

\[(x + 2)\left( 2x^{3} + 9x^{2} - 5x \right) = 0\]

\[x(x + 2)\left( 2x^{2} + 9x - 5 \right) = 0\]

\[2x^{2} + 9x - 5 = 0\]

\[D = 81 + 40 = 121\]

\[x_{1} = \frac{- 9 - 11}{4} = - 5;\ \ \ \]

\[x_{2} = \frac{- 9 + 11}{4} = \frac{2}{4} = 0,5.\]

\[x = 0:\]

\[y = 0 + 2 = 2.\]

\[x = - 2:\]

\[y = - 2 + 2 = 0.\]

\[x = - 5:\]

\[y = - 5 + 2 = - 3.\]

\[x = 0,5:\]

\[y = 0,5 + 2 = 2,5.\]

\[Ответ:(0,5;2,5);( - 2;0);(0;2);\]

\[( - 5; - 3).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам