\[\boxed{\mathbf{347}.}\]
\[(x + y)^{5} - x^{5} - y^{5} =\]
\[= 5xy(x + y)\left( x^{2} + xy + y^{2} \right)\]
\[Преобразуем\ правую\ часть\ \]
\[тождества:\]
\[5xy(x + y)\left( x^{2} + xy + y^{2} \right) =\]
\[= \left( 5x^{2}y + 5xy^{2} \right)\]
\[\left( x^{2} + xy + y^{2} \right) =\]
\[= 5x^{4}y + 5x^{3}y^{2} + 5x^{3}y^{2} +\]
\[+ 5x^{2}y^{3} + 5x^{2}y^{3} + 5xy^{4} =\]
\[= \left( x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + y^{5} \right) -\]
\[- x^{5} - y^{5} =\]
\[= (x + y)^{5} - x^{5} - y^{5}.\]
\[Что\ и\ требовалось\ доказать.\]