346.
1) P(x, y)=15x4−8x3y+
+31x2y2−16xy3+2y4
y=tx:
P(x, y)=15x4−8tx4+
+31t2x4−16t3x4+2t4x4=
=x4(2t4−16t3+31t2−8t+15).
Q(x, y)=
=x4(t−3)(t−5)(2t2+1).
ДелаемобратнуюзаменуДелаем обратную замену:
\ \ \ t=yx.
P(x, y)=
=x4(yx−3)(yx−5)
(2⋅y2x2+1)=
=(y−3x)(y−5x)(2y2+x2).
2) P(x, y)=12x5−32x4y+
+9x3y2+16x2y3−
−3xy4−2y5.
P(x, y)=12x5−32x4tx+
+9x3(tx)2+16x2(tx)3−
−3x(tx)4−2(tx)5.
=12x5−32xt5+9t2x5+
+16t3x5−3t4x5−2t5x5=
=x5(−2t5−3t4+16t3+9t2−32t+12).
Q(x, y)=(t−1)(t+3)
(t−2)(t+2)(−2t+1).
ДелаемобратнуюзаменуДелаем обратную замену
t=yx:
P(x, y)=x5(yx−1)(yx+3)
(yx−2)(yx+2)(−2yx+1)=
=(y−x)(y+3x)(y−2x)
(y+2x)(−2y+x).