\[\boxed{\mathbf{340}.}\]
\[x^{3} - 2x^{2} - x + 2 = 0\]
\[x_{1};x_{2};x_{2} - корни.\]
\[\left\{ \begin{matrix} x_{1} + x_{2} + x_{3} = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x_{1}x_{2} + x_{2}x_{3} + x_{1}x_{3} = - 1 \\ x_{1}x_{2}x_{3} = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x_{1} = - y_{1};\ \ x_{2} = - y_{2};\ \ x_{3} = - y_{3}\]
\[Подставим:\]
\[1)\ y_{1} + y_{2} + y_{3} =\]
\[= - \left( x_{1} + x_{2} + x_{3} \right) = - 2;\]
\[2)\ y_{1}y_{2} + y_{2}y_{3} + y_{1}y_{3} =\]
\[= x_{1}x_{2} + x_{2}x_{3} + x_{1}x_{3} = - 1;\]
\[3)\ y_{1}y_{2}y_{3} = - x_{1}x_{2}x_{3} = - 2.\]
\[Получаем\ уравнение:\]
\[x^{3} + 2x^{2} - x - 2 = 0.\]