\[\boxed{\mathbf{334}.}\]
\[x^{2} - 6x - 7 = 0\]
\[По\ теореме\ Виета:\]
\[x_{1} + x_{2} = 6;\ \ \ \ x_{1} \cdot x_{2} = - 7.\]
\[x^{2} + bx + c = 0\]
\[y_{1} = \frac{1}{x_{1}};\ \ \ y_{2} = \frac{1}{x_{2}}:\]
\[- b = \frac{1}{x_{1}} + \frac{1}{x_{2}} = \frac{x_{2} + x_{1}}{x_{1} \cdot x_{2}} =\]
\[= \frac{6}{- 7} = - \frac{6}{7}.\]
\[c = \frac{1}{x_{1}} \cdot \frac{1}{x_{2}} = \frac{1}{x_{1} \cdot x_{2}} = - \frac{1}{7}.\]
\[Получаем\ уравнение:\]
\[x^{2} + \frac{6}{7}x - \frac{1}{7} = 0\ \ \ \ | \cdot 7\]
\[7x^{2} + 6x - 1 = 0.\]