Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 316

Авторы:
Тип:учебник

Задание 316

\[\boxed{\mathbf{316}.}\]

\[1)\ x^{4} + x^{3} - 7x^{2} - x + 6 = 0;\ \]

\[\ x_{1} = 2:\ \]

\[1\] \[1\] \[- 7\] \[- 1\] \[6\]
\[2\] \[1\] \[3\] \[- 1\] \[- 3\] \[0\]
\[- 3\] \[1\] \[0\] \[- 1\] \[0\]

\[P(x) = (x - 2)(x + 3)\left( x^{2} - 1 \right) =\]

\[= (x - 2)(x + 3)(x + 1)(x - 1) = 0.\]

\[Ответ:x = \pm 1; - 3;\ \ 2.\]

\[2)\ 2x^{4} + 12x^{3} + 11x^{2} + 6x +\]

\[+ 5 = 0;\ \ x_{1} = - 1:\]

\[2\] \[12\] \[11\] \[6\] \[5\]
\[- 1\] \[2\] \[10\] \[1\] \[5\] \[0\]
\[- 5\] \[2\] \[2\] \[1\] \[0\]

\[P(x) =\]

\[= (x + 1)(x + 5)\left( 2x^{2} + 2x + 1 \right) = 0.\]

\[2x^{2} + 2x + 1 = 0\]

\[D_{1} = 1 - 2 = - 1 < 0\]

\[нет\ корней.\]

\[Ответ:x = - 5;\ - 1.\]

\[3)\ 2x^{5} - x^{4} - 12x^{3} + 6x^{2} +\]

\[+ 18x - 9 = 0;\ \ x_{1} = \frac{1}{2}:\]

\[x^{4}(2x - 1) - 6x^{2}(2x - 1) +\]

\[+ 9 \cdot (2x - 1) = 0\]

\[(2x - 1)\left( x^{4} - 6x^{2} + 9 \right) = 0\]

\[2 \cdot (x - 0,5)\left( x^{2} - 3 \right)^{2} = 0\]

\[x = 0,5;\ \ \ \ \ x^{2} = 3\]

\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = \pm \sqrt{3}.\]

\[Ответ:x = 0,5;\ \pm \sqrt{3}.\]

\[4)\ 3x^{5} + x^{4} - 15x^{3} - 5x^{2} +\]

\[+ 12x + 4 = 0;\ \ \ x_{1} = - \frac{1}{3}:\]

\[x^{4}(3x + 1) - 5x^{2}(3x + 1) +\]

\[+ 4 \cdot (3x + 1) = 0\]

\[(3x + 1)\left( x^{4} - 5x^{2} + 4 \right) = 0\]

\[x^{4} - 5x^{2} + 4 = 0\]

\[x^{2} = y \geq 0:\]

\[y^{2} - 5y + 4 = 0\]

\[y_{1} + y_{2} = 5;\ \ y_{1} \cdot y_{2} = 4\]

\[y_{1} = 1;\ \ \ y_{2} = 4.\]

\[x^{2} = 1\ \ \ \ \ \ \ \ \ x^{2} = 4\]

\[x = \pm 1\ \ \ \ \ \ \ \ x = \pm 2.\]

\[3 \cdot \left( x + \frac{1}{3} \right)(x + 2)(x - 2)(x + 1)(x - 1) = 0\]

\[Ответ:x = \pm 2;\ \pm 1;\ - \frac{1}{3}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам