\[\boxed{\mathbf{283}.}\]
\[1)\ a = \frac{n^{2} + 2}{n - 1} =\]
\[= \frac{(n - 1)^{2} + 2 \cdot (n - 1) + 3}{n - 1} =\]
\[= n - 1 + 2 + \frac{3}{n - 1} =\]
\[= n + 1 + \frac{3}{n - 1} \rightarrow целое\ число\]
\[\ при\ n = - 2;0;2;4.\]
\[2)\ a = \frac{2n^{2} + 1}{2n^{2} - 1} = \frac{2n^{2} - 1 + 2}{2n^{2} - 1} =\]
\[= 1 + \frac{2}{2n^{2} - 1} \rightarrow целое\ число\ \]
\[при\ n = \pm 1;0.\]
\[3)\ a = \frac{n^{4} + 3n^{2} + 7}{n^{2} + 1} =\]
\[= \frac{\left( n^{2} + 1 \right)^{2} + \left( n^{2} + 1 \right) + 5}{n^{2} + 1} =\]
\[= n^{2} + 2 + \frac{5}{n^{2} + 1} \rightarrow целое\]
\[число\ \ при\ n = \pm 2;0.\]
\[4)\ a = \frac{n^{5} + 3}{n^{2} + 1} =\]
\[= \frac{n\left( n^{2} + 1 \right)^{2} - 2 \cdot \left( n^{2} + 1 \right) + n + 3}{n^{2} + 1} =\]
\[= n^{3} - n + \frac{n + 3}{n^{2} + 1}\]
\[При\ \ \frac{n + 3}{n^{2} + 1} - целое\ число.\]
\[Пусть\ \ \frac{n + 3}{n^{2} + 1} = t:\]
\[n + 3 = t\left( n^{2} + 1 \right)\]
\[n + 3 = n^{2}t + t\]
\[n^{2}t + t - 3 - n = 0\]
\[При\ t = 0 \rightarrow n = - 3;\]
\[при\ t \neq 0 \rightarrow tn^{2} - n + t - 3 = 0\]
\[D = 1 - 4t^{2} + 12t\]
\[D \geq 0\ при\ t = 1;2;3.\]
\[при\ t = 1 \rightarrow n^{2} - n - 2 =\]
\[= 0 \rightarrow n = - 1;2;\]
\[при\ t = 2 \rightarrow 2n^{2} - n - 1 =\]
\[= 0 \rightarrow n = 1;\]
\[при\ t = 3 \rightarrow 3n^{2} - n =\]
\[= 0 \rightarrow n = 0;\ - 3.\]
\[Выражение\ является\ целым\ \]
\[числом\ при\ n = - 3;\ \pm 1;0;2.\]