\[\boxed{\mathbf{281}.}\]
\[m;n \in N;\ \ (m + n + 2)\ \vdots 6.\]
\[m + n + 2 = 6k;\ \ k \in Z:\]
\[(m + n + 2)^{3} = m^{3} +\]
\[+ 3m^{2}(n + 2) + 3m(n + 2)^{2} +\]
\[+ (n + 2)^{3} =\]
\[= m^{3} + 3m^{2}(n + 2) +\]
\[+ 3m(n + 2)^{2} + (n + 3)^{3} =\]
\[= m^{3} + 3m^{2}n + \underset{\vdots 6}{\overset{6m^{2}}{︸}} + 3mn^{2} +\]
\[+ \underset{\vdots 6}{\overset{12mn}{︸}} + \underset{\vdots 6}{\overset{12m}{︸}} + n^{3} +\]
\[+ \underset{\vdots 6}{\overset{6n^{2}}{︸}} + \underset{\vdots 6}{\overset{12n}{︸}} + 8;\]
\[m^{3} + n^{3} + 8 + 3mn\underset{6k - 2}{\overset{(m + n)}{︸}}\ \vdots 6\]
\[m^{3} + n^{3} + 8 + \underset{\vdots 6}{\overset{6mn(3k - 1)}{︸}}\ \vdots 6\]
\[Следовательно:\]
\[m^{3} + n^{3} + 8\ \vdots 6.\]
\[Что\ и\ требовалось\ доказать.\]