Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 265

Авторы:
Тип:учебник

Задание 265

\[\boxed{\mathbf{265}.}\]

\[1)\ x^{2} - y^{2} = 21\]

\[(x - y)(x + y) = 21\]

\[\left\{ \begin{matrix} x - y = 1\ \ \\ x + y = 21 \\ \end{matrix} \right.\ ( + )\]

\[2x = 22\]

\[x = 11.\]

\[y = x - 1 = 11 - 1 = 10.\]

\[\left\{ \begin{matrix} x - y = - 1\ \ \\ x + y = - 21 \\ \end{matrix} \right.\ ( + )\]

\[2x = - 22\]

\[x = - 11.\]

\[y = x + 1 = - 11 + 1 = - 10.\]

\[\left\{ \begin{matrix} x - y = 21 \\ x + y = 1\ \ \ \\ \end{matrix} \right.\ ( + )\]

\[2x = 22\]

\[x = 11.\]

\[y = 1 - x = 1 - 11 = - 10.\]

\[\left\{ \begin{matrix} x - y = - 21 \\ x + y = - 1\ \ \\ \end{matrix} \right.\ ( + )\]

\[2x = - 22\]

\[x = - 11.\]

\[y = - 1 - x = - 1 + 11 = 10.\]

\[\left\{ \begin{matrix} x - y = 3 \\ x + y = 7 \\ \end{matrix} \right.\ ( + )\]

\[2x = 10\]

\[x = 5.\]

\[y = x - 3 = 5 - 3 = 2.\]

\[\left\{ \begin{matrix} x - y = - 3 \\ x + y = - 7 \\ \end{matrix} \right.\ ( + )\]

\[2x = - 10\]

\[x = - 5.\]

\[y = - 7 - x = - 7 + 5 = - 2.\]

\[\left\{ \begin{matrix} x - y = 7 \\ x + y = 3 \\ \end{matrix} \right.\ ( + )\]

\[2x = 10\]

\[x = 5.\]

\[y = x - 7 = 5 - 7 = - 2.\]

\[\left\{ \begin{matrix} x - y = - 7 \\ x + y = - 3 \\ \end{matrix} \right.\ ( + )\]

\[2x = - 10\]

\[x = - 5.\]

\[y = - 3 - x = - 3 + 5 = 2.\]

\[Ответ:(11;10);( - 11; - 10);\]

\[(11; - 10);( - 11;10);\]

\[(5;2);( - 5; - 2);\]

\[(5; - 2);( - 5;2).\]

\[2)\ xy = 5 - x\]

\[xy + x = 5\]

\[x(y + 1) = 5\]

\[\left\{ \begin{matrix} x = 1\ \ \ \ \ \ \ \\ y + 1 = 5 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x = 1 \\ y = 4 \\ \end{matrix} \right.\ ;\]

\[\left\{ \begin{matrix} x = - 1\ \ \ \ \ \ \ \ \\ y + 1 = - 5 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x = - 1 \\ y = - 6 \\ \end{matrix} \right.\ ;\]

\[\left\{ \begin{matrix} x = 5\ \ \ \ \ \ \ \ \\ y + 1 = 1 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x = 5 \\ y = 0 \\ \end{matrix} \right.\ ;\]

\[\left\{ \begin{matrix} x = - 5\ \ \ \ \ \ \ \ \\ y + 1 = - 1 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x = - 5 \\ y = - 2 \\ \end{matrix} \right.\ .\]

\[Ответ:(1;4);\ \ ( - 1; - 6);\]

\[\text{\ \ }(5;0);\ \ ( - 5; - 2).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам