\[\boxed{\mathbf{191}.}\]
\[Геометрическая\ прогрессия:\]
\[x;\ \ xq;\ \ xq^{2}\text{.\ }\]
\[x + xq + xq^{2} = 78.\]
\[Арифметическая\ прогрессия:\]
\[a_{1} = x;\ \ a_{3} = xq;\ \ a_{9} = xq^{2}.\]
\[a_{3} = x + 2d = xq \rightarrow d =\]
\[= \frac{xq - x}{2};\]
\[a_{9} = x + 8d = xq^{2} \rightarrow d =\]
\[= \frac{xq^{2} - x}{8}.\]
\[\frac{xq - x}{2} = \frac{xq^{2} - x}{8}\ \ \ \ \ | \cdot \frac{8}{x}\]
\[4 \cdot (q - 1) = q^{2} - 1\]
\[4q - 4 - q^{2} + 1 = 0\]
\[q^{2} - 4q + 3 = 0\]
\[D_{1} = 4 - 3 = 1\]
\[q_{1} = 2 + 1 = 3;\ \ q_{2} = 2 - 1 = 1.\]
\[При\ q = 1:\]
\[x;\ \ x;\ \ x - не\ геометрическая\]
\[\ прогрессия \rightarrow не\ подходит.\]
\[При\ q = 3:\]
\[x + 3x + 9x = 78\]
\[13x = 78\]
\[x = 6.\]
\[Большее\ число:\]
\[6 \cdot 3^{2} = 6 \cdot 9 = 54.\]
\[Ответ:54.\]