\[\boxed{\mathbf{190}.}\]
\[b_{1} = x;\ \ b_{2} = y;\ \ b_{3} = z;\]
\[a_{1} = x;\ \ a_{2} = 2y;\ \ a_{3} = 3z.\]
\[\left\{ \begin{matrix} x = 2y + d\ \\ 2y = 3z + d \\ \end{matrix} \right.\ ( - )\]
\[x - 2y = 2y - 3z\]
\[x - 4y + 3z = 0\ \ \ \ |\ :x\]
\[1 - 4 \cdot \frac{y}{x} + 3 \cdot \frac{z}{x} = 0\]
\[\left\{ \begin{matrix} q = \frac{y}{x} \\ q^{2} = \frac{z}{x} \\ \end{matrix}\text{\ \ } \right.\ \]
\[1 - 4q + 3q^{2} = 0\]
\[3q^{2} - 4q + 1 = 0\]
\[D_{1} = 4 - 3 = 1\]
\[q_{1} = \frac{2 + 1}{3} = 1;\ \]
\[\ q_{2} = \frac{2 - 1}{3} = \frac{1}{3}.\]
\[Ответ:1\ или\ \frac{1}{3}.\]