\[\boxed{\mathbf{188}.}\]
\[b_{n} = - 4 \cdot \left( \frac{1}{2} \right)^{n - 1};\]
\[b_{1} = - 4 \cdot \left( \frac{1}{2} \right)^{0} = - 4;\]
\[b_{2} = - 4 \cdot \left( \frac{1}{2} \right)^{1} = - 2;\]
\[q = \frac{b_{2}}{b_{1}} = \frac{- 2}{- 4} = \frac{1}{2}.\]
\[S_{5} = \frac{b_{1} \cdot \left( 1 - q^{5} \right)}{1 - q} =\]
\[= \frac{- 4 \cdot \left( 1 - \left( \frac{1}{2} \right)^{5} \right)}{1 - \frac{1}{2}} =\]
\[= \frac{- 4 \cdot \left( 1 - \frac{1}{32} \right)}{\frac{1}{2}} = - 8 \cdot \frac{31}{32} =\]
\[= - \frac{31}{4} = - 7,75.\]
\[Ответ:\ - 7,75.\]