\[\boxed{\mathbf{152}.}\]
\[1)\ x^{2} - 2x - 8 \leq 0\]
\[D_{1} = 1 + 8 = 9\]
\[x_{1} = 1 + 3 = 4;\ \]
\[\ x_{2} = 1 - 3 = - 2.\]
\[(x + 2)(x - 4) \leq 0\]
\[Ответ:\lbrack - 2;4\rbrack.\]
\[2)\ x^{2} - 2x - 8 > 0\]
\[\ D_{1} = 1 + 8 = 9\]
\[x_{1} = 1 + 3 = 4;\ \ \]
\[x_{2} = 1 - 3 = - 2.\]
\[Ответ:x < - 2;x > 4.\]
\[3)\ x^{2} + 6x + 9 \geq 0\]
\[(x + 3)^{2} \geq 0\]
\[Ответ:x - любое\ число.\]
\[4)\ x^{2} + 6x + 9 > 0\]
\[(x + 3)^{2} > 0\]
\[Ответ:x - любое\ число,\ \]
\[кроме\ x = - 3.\]
\[5)\ x^{2} + 6x + 9 < 0\]
\[(x + 3)^{2} < 0\]
\[Ответ:нет\ корней.\]
\[6)\ x^{2} + 3x + 3 < 0\]
\[D = 3 - 12 = - 9 < 0 - нет\]
\[\ корней.\]
\[Ответ:\ корней\ нет.\]