\[\boxed{\mathbf{1274}\mathbf{.}}\]
\[\sin{2x} - 2a\sqrt{2} \bullet \left( \sin x + \cos x \right) +\]
\[+ 1 - 6a^{2} = 0\]
\[\sin\left( \frac{\pi}{2} + 2x - \frac{\pi}{2} \right) - 2a\sqrt{2} \bullet\]
\[\bullet \left( \sin\left( \frac{\pi}{2} + x - \frac{\pi}{2} \right) + \cos x \right) +\]
\[+ 1 - 6a^{2} = 0\]
\[1 + \cos\left( 2x - \frac{\pi}{2} \right) - 2a\sqrt{2} \bullet\]
\[\bullet \left( \cos\left( x - \frac{\pi}{2} \right) + \cos x \right) -\]
\[- 6a^{2} = 0\]
\[2 \bullet \frac{1 + \cos\left( 2x - \frac{\pi}{2} \right)}{2} - 2a\sqrt{2} \bullet 2 \bullet\]
\[\bullet \cos\frac{x - \frac{\pi}{2} + x}{2} \bullet \cos\frac{x - \frac{\pi}{2} - x}{2} -\]
\[- 6a^{2} = 0\]
\[2\cos^{2}\left( x - \frac{\pi}{4} \right) - 4a\sqrt{2} \bullet\]
\[\bullet \cos\left( x - \frac{\pi}{4} \right) \bullet \cos\frac{\pi}{4} - 6a^{2} = 0\]
\[2\cos^{2}\left( x - \frac{\pi}{4} \right) - 4a \bullet\]
\[\bullet \cos\left( x - \frac{\pi}{4} \right) - 6a^{2} = 0\]
\[Пусть\ y = \cos\left( x - \frac{\pi}{4} \right):\]
\[2y^{2} - 4ay - 6a^{2} = 0\]
\[D = 16a^{2} + 4 \bullet 2 \bullet 6a^{2} =\]
\[= 16a^{2} + 48a^{2} = 64a^{2}\]
\[y_{1} = \frac{4a - 8a}{2 \bullet 2} = - a\ \ и\]
\[\text{\ \ }y_{2} = \frac{4a + 8a}{2 \bullet 2} = 3a.\]
\[Уравнение\ имеет\ корни\ при:\]
\[\left\{ \begin{matrix} - 1 \leq - a \leq 1 \\ - 1 \leq 3a \leq 1\ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} - 1 \leq a \leq 1 \\ - \frac{1}{3} \leq a \leq \frac{1}{3} \\ \end{matrix} \right.\ \]
\[Значения\ корней\ уравнения\ \]
\[при\ - \frac{1}{3} \leq a \leq \frac{1}{3}:\]
\[x_{1} = \frac{\pi}{4} \pm \left( \pi - \arccos a \right) + 2\pi n\]
\[x_{2} = \frac{\pi}{4} \pm \arccos{3a} + 2\pi n.\]
\[Значения\ уравнения\ при\]
\[\ \frac{1}{3} < |a| \leq 1\]
\[x = \frac{\pi}{4} \pm \left( \pi - \arccos a \right) + 2\pi n.\]