\[\boxed{\mathbf{1266}\mathbf{.}}\]
\[1)\sin\frac{3x}{2} + \cos\frac{3x}{2} > 0\]
\[\sqrt{2}\sin\left( \frac{3x}{2} + \frac{\pi}{4} \right) > 0\]
\[2\pi n < \frac{3x}{2} + \frac{\pi}{4} < \pi + 2\pi n\]
\[- \frac{\pi}{4} + 2\pi n < \frac{3x}{2} < \frac{3\pi}{4} + 2\pi n\]
\[- \frac{\pi}{6} + \frac{4\pi n}{3} < x < \frac{\pi}{2} + \frac{4\pi n}{3}.\]
\[2)\cos{2x} + \cos x \geq 0\]
\[2\cos^{2}x + \cos x - 1 \geq 0\]
\[Пусть\cos x = y:\]
\[2y^{2} + y - 1 \geq 0\]
\[D = 1 + 8 = 9\]
\[y_{1} = \frac{- 1 + 3}{4} = \frac{1}{2};\ \ \]
\[y_{2} = \frac{- 1 - 3}{4} = - 1.\]
\[(y + 1)\left( y - \frac{1}{2} \right) \geq 0\]
\[y \leq - 1;\ \ y \geq \frac{1}{2}.\]
\[\cos x = - 1\]
\[x = \pi + 2\pi k.\]
\[\cos x = \frac{1}{2}\]
\[x = \pm \frac{\pi}{3} + 2\pi k.\]
\[- \frac{\pi}{3} + 2\pi k \leq x \leq \frac{\pi}{3} + 2\pi k.\]