\[\boxed{\mathbf{1260}\mathbf{.}}\]
\[1)\ \frac{\left( \sqrt{3} + 1 \right)\sin{3x} + \sin{5x}}{\left| \sin x \right|} =\]
\[= \sqrt{3}\]
\[1)\sin x > 0:\]
\[16\cos^{4}x + \left( 4\sqrt{3} - 8 \right)\cos^{2}x -\]
\[- \sqrt{3} = \sqrt{3}\]
\[Пусть\ t = \cos^{2}x:\]
\[16t^{2} + \left( 4\sqrt{3} - 8 \right)t - 2\sqrt{3} = 0\]
\[t_{1} = \frac{1}{2};\ \ \ \ t_{2} = - \frac{\sqrt{3}}{4}.\]
\[\cos^{2}x = \frac{1}{2}\]
\[\cos x = \pm \frac{\sqrt{2}}{2}\]
\[x = \pm \frac{\pi}{3} + 2\pi n;\ \ \ \]
\[x = \pm \frac{2\pi}{3} + 2\pi n.\]
\[Подходят\ корни:\]
\[x = \frac{\pi}{3} + 2\pi n;\ \ \ x = \frac{2\pi}{3} + 2\pi n.\]
\[2)\sin x < 0:\]
\[16\cos^{4}x +\]
\[+ \left( 4\sqrt{3} - 8 \right)\cos^{2}x = 0\]
\[\cos x = 0\]
\[x = \frac{\pi}{2} + \pi n.\]
\[\cos^{2}x = \frac{1}{2} - \frac{1}{4}\sqrt{3}\]
\[\cos x = \pm \left( \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} \right)\]
\[x = \pm \arccos{\left( \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} \right) + 2\pi n}\]
\[x =\]
\[= \pm \left( \pi - \arccos\left( \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} \right) \right) +\]
\[+ 2\pi n.\]
\[Нам\ подходят:\]
\[x = - \frac{\pi}{2} + 2\pi n;\]
\[x = - \arccos\left( \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} \right) + 2\pi n;\]
\[x = - \pi + \arccos\left( \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} \right) +\]
\[+ 2\pi n.\]
\[2)\ \frac{\left( \sqrt{3} + 1 \right)\cos{3x} - \cos{5x}}{\left| \cos x \right|} =\]
\[= \sqrt{3}\]
\[1)\cos x > 0:\]
\[- 16\cos^{4}x +\]
\[+ \left( 4\sqrt{3} + 24 \right)\cos^{2}x - 3\sqrt{3} -\]
\[- 8 = \sqrt{3}\]
\[Пусть\cos^{2}x = t:\]
\[- 16t^{2} + \left( 4\sqrt{3} + 24 \right)t -\]
\[- 4\sqrt{3} - 8 = 0\]
\[Корни:\ \ t_{1} = 1;\ \ t_{2} = \frac{\sqrt{3}}{4} + \frac{1}{2}.\]
\[\cos^{2}x = 1\]
\[\cos x = \pm 1.\]
\[\cos^{2}x = \frac{\sqrt{3}}{4} + \frac{1}{2}\]
\[\cos x = \pm \left( \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \right).\]
\[Нам\ подходят\ корни:\]
\[\cos x = 1\]
\[x = 2\pi n.\]
\[\cos x = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}\]
\[x = \pm \arccos\left( \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \right).\]
\[2)\cos x < 0:\]
\[- 16\cos^{4}x +\]
\[+ \left( 4\sqrt{3} + 24 \right)\cos^{2}x -\]
\[- 3\sqrt{3} - 8 = - \sqrt{3}\]
\[Пусть\cos^{2}x = t:\]
\[- 16t^{2} + \left( 4\sqrt{3} + 24 \right)t -\]
\[- 2\sqrt{3} - 8 = 0\]
\[Корни:\ \ t_{1} = \frac{1}{2};\ \ t_{2} = \frac{\sqrt{3}}{4} + 1.\]
\[\cos^{2}x = \frac{1}{2}\]
\[\cos x = - \frac{1}{2}\]
\[x = \pm \frac{2\pi}{3} + 2\pi n.\]
\[Ответ:\ \pm \arccos\left( \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \right);\ \ \]
\[2\pi n;\ \pm \frac{2\pi}{3} + 2\pi n.\]
\[3)\ \frac{2\sin{3x}}{\sin x} = \frac{\left| \cos{6x} \right|}{\cos{2x}}\]
\[1)\cos{6x} \geq 0:\]
\[8\cos^{2}x - 2 = 16\cos^{4}x -\]
\[- 16\cos^{2}x + 1\]
\[16\cos^{4}x - 24\cos^{2}x + 3 = 0\]
\[Пусть\cos^{2}x = t:\]
\[16t^{2} - 24t + 3 = 0\]
\[D_{1} = 144 - 48 = 96\]
\[t_{1} = \frac{12 + 4\sqrt{6}}{16} = \frac{3 + \sqrt{6}}{4};\ \ \ \ \]
\[t_{2} = \frac{12 - 4\sqrt{6}}{16} = \frac{3 - \sqrt{6}}{4}.\]
\[\cos^{2}x = \frac{3 - \sqrt{6}}{4}\]
\[\cos x = \pm \frac{1}{2}\sqrt{3 - \sqrt{6}}\]
\[x = \pm \arccos\left( \pm \frac{1}{2}\sqrt{3 - \sqrt{6}} \right) +\]
\[+ 2\pi n.\]
\[2)\cos{6x} < 0\]
\[8\cos^{2}x - 2 =\]
\[= - (16\cos^{4}x - 16\cos^{2}x + 1)\]
\[16\cos^{4}x - 8\cos^{2}x - 1 = 0\]
\[Пусть\cos^{2}x = t:\]
\[16t^{2} - 8t - 1 = 0\]
\[D_{1} = 16 + 16 = 32\]
\[t_{1,2} = \frac{4 \pm 4\sqrt{2}}{16} = \frac{1 \pm \sqrt{2}}{4}.\]
\[\cos x = \pm \frac{1}{2}\sqrt{1 + \sqrt{2}\ }\]
\[x = \pm \arccos{\pm \frac{1}{2}\sqrt{1 + \sqrt{2}\ }} +\]
\[+ 2\pi n.\]
\[Ответ:\ \]
\[\pm \arccos\left( \pm \frac{1}{2}\sqrt{3 - \sqrt{6}} \right) + 2\pi n;\ \ \]
\[\ \pm \arccos{\pm \frac{1}{2}\sqrt{1 + \sqrt{2}\ }} + 2\pi n.\ \]
\[4)\ \frac{\sin{6x}}{\left| \sin{4x} \right|} = \frac{\cos{3x}}{\cos x}\]
\[1)\sin{4x} > 0:\]
\[2\cos{2x} - \frac{1}{2\cos{2x}} =\]
\[= 2\cos{2x} - 1\]
\[2\cos{2x} = 1\]
\[\cos{2x} = \frac{1}{2}\]
\[2x = \pm \frac{\pi}{3} + 2\pi n\]
\[x = \pm \frac{\pi}{6} + 2\pi n.\]
\[Нам\ подходит\ корень:\]
\[\ \ x = \frac{\pi}{6} + 2\pi n.\]
\[2)\sin{4x} < 0:\]
\[2\cos{2x} - \frac{1}{2\cos{2x}} =\]
\[= - 2\cos{2x} + 1\]
\[Пусть\cos{2x} = t:\]
\[2t - \frac{1}{t} = - 2t + 1\]
\[4t^{2} - 2t - 1 = 0\]
\[t_{1} = \frac{1}{2};\ \ \ t_{2} = - \frac{1}{4}.\]
\[\cos{2x} = \frac{1}{2}\]
\[x = \pm \frac{\pi}{6} + 2\pi n.\]
\[\cos{2x} = - \frac{1}{4}\]
\[2x = \pm \arccos\left( - \frac{1}{4} \right) + 2\pi n\]
\[x = \pm \frac{1}{2}\arccos\left( - \frac{1}{4} \right) + \pi n.\]
\[Нам\ подходят\ корни:\]
\[x = - \frac{\pi}{6} + 2\pi n;\ \ \]
\[\ \ x = \frac{1}{2}\arccos\left( - \frac{1}{4} \right) + \pi n.\]
\[Ответ:\ \pm \frac{\pi}{6} + 2\pi n;\]
\[\text{\ \ }\frac{1}{2}\arccos\left( - \frac{1}{4} \right) + \pi n.\ \ \ \]