\[\boxed{\mathbf{1259}\mathbf{.}}\]
\[1)\ \sqrt{2\cos x - \sin x} = ctg\ x\sqrt{\sin x}\]
\[2\cos x - \sin x = ctg^{2}x \cdot \sin x\]
\[\frac{2\sin x\cos x - 1}{\sin x} = 0\]
\[\sin{2x} = 1\]
\[2x = \frac{\pi}{2} + 2\pi n\]
\[x = \frac{\pi}{4} + \pi n\]
\[Ответ:\ x = \frac{\pi}{4} + 2\pi n.\]
\[2)\ \sqrt{6\sin x\cos{2x}} = \sqrt{- 7\sin{2x}}\]
\[6\sin x\cos{2x} = - 7\sin{2x}\]
\[2\sin x\left( 6\cos^{2}x + 7\cos x - 3 \right) =\]
\[= 0\]
\[\sin x = 0\]
\[x = \pi n.\]
\[6\cos^{2}x + 7\cos x - 3 = 0\]
\[t = \cos x:\]
\[6t^{2} + 7t - 3 = 0\]
\[D = 49 + 72 = 121\]
\[t_{1} = \frac{- 7 - 11}{12} = - \frac{18}{12} = - \frac{3}{2};\ \ \]
\[\ t_{2} = \frac{- 7 + 11}{12} = \frac{4}{12} = \frac{1}{3}.\]
\[\cos x = \frac{1}{3}\]
\[x = \pm \arccos\frac{1}{3} + 2\pi n.\]
\[Ответ:x = \pi n;\ \ \ \]
\[x = \pm \arccos\frac{1}{3} + 2\pi n.\]
\[3)\ \sqrt{5tgx + 10} = \frac{5}{2}\sin x + \frac{1}{\cos x}\]
\[5\ tg\ x + 10 = \left( \frac{5}{2}\sin x + \frac{1}{\cos x} \right)^{2}\]
\[\frac{1}{4} \cdot \frac{25\cos^{4}x + 15\cos^{2}x - 4}{\cos^{2}x} = 0\]
\[25\cos^{4}x + 15\cos^{2}x - 4 = 0\]
\[Пусть\cos^{2}x = t:\]
\[25t^{2} + 15t - 4 = 0\]
\[D = 225 + 400 = 625\]
\[t_{1} = \frac{- 15 + 25}{50} = \frac{10}{50} = \frac{1}{5};\ \ \ \]
\[t_{2} = \frac{- 15 - 25}{50} = - \frac{40}{50} = - \frac{4}{5}.\]
\[\cos^{2}x = \frac{1}{5}\]
\[\cos x = \pm \frac{1}{\sqrt{5}}\]
\[x = \pm \arccos\left( \pm \frac{1}{\sqrt{5}} \right) + 2\pi n.\]
\[Нам\ подходит:\]
\[1)\ x = \pm \arccos\frac{1}{\sqrt{5}} + 2\pi n;\]
\[2)\ x = \pi - \arccos\frac{1}{\sqrt{5}} + 2\pi n.\ \]
\[4)\ \sqrt{12 - 6\sqrt{2}\text{tgx}} =\]
\[= 3\sin x - \frac{\sqrt{2}}{\cos x}\]
\[12 - 6\sqrt{2}tgx =\]
\[= \left( 3\sin x - \frac{\sqrt{2}}{\cos x} \right)^{2}\]
\[\frac{9\cos^{4}x + 3\cos^{2}x - 2}{\cos^{2}x} = 0\]
\[9\cos^{4}x + 3\cos^{2}x - 2 = 0\]
\[Пусть\cos^{2}x = t:\]
\[9t^{2} + 3t - 2 = 0\]
\[D = 9 + 72 = 81\]
\[t_{1} = \frac{- 3 - 9}{18} = - \frac{12}{18} = - \frac{2}{3};\ \ \]
\[\ t_{1} = \frac{- 3 + 9}{18} = \frac{1}{18}.\]
\[\cos^{2}x = \frac{1}{3}\]
\[x = \pm \arccos\left( \pm \frac{1}{\sqrt{3}} \right) + 2\pi n.\]
\[Нам\ подходят:\]
\[x = \arccos\frac{1}{\sqrt{3}} + 2\pi n;\]
\[x = \pm \left( \pi - \arccos\frac{1}{\sqrt{3}} \right) + 2\pi n.\]