Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 126

Авторы:
Тип:учебник

Задание 126

\[\boxed{\mathbf{126}.}\]

\[1)\ \left\{ \begin{matrix} x^{2} - 2y - 2 = 0 \\ x^{2} + y^{2} - 5 = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x^{2} - 2y = 2 \\ x^{2} + y^{2} = 5 \\ \end{matrix} \right.\ ( - )\]

\[- 2y - y^{2} = - 3\]

\[y^{2} + 2y - 3 = 0\]

\[D_{1} = 1 + 3 = 4\]

\[y_{1} = - 1 + 2 = 1;\ \ \]

\[y_{2} = - 1 - 2 = - 3.\]

\[x^{2} = 5 - y^{2}\]

\[x^{2} = 5 - 1 = 4\]

\[x = \pm 2.\]

\[x^{2} = - 3 - 1 = - 4\]

\[нет\ корней.\]

\[Ответ:\ (2;1);( - 2;1).\]

\[2)\ \left\{ \begin{matrix} x^{2} - 2xy + y^{2} = 4 \\ xy = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]

\[\left\{ \begin{matrix} (x - y)^{2} = 4 \\ xy = 3\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\lbrack \begin{matrix} \left\{ \begin{matrix} x - y = 2 \\ xy = 3\ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ } \\ \left\{ \begin{matrix} x - y = - 2 \\ xy = 3\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \\ \end{matrix} \right.\ \]

\[1)\ \left\{ \begin{matrix} x - y = 2 \\ xy = 3\ \ \ \ \ \\ \end{matrix}\ \right.\ \text{\ \ \ }\left\{ \begin{matrix} x = 2 + y\ \ \ \ \ \ \ \ \ \ \\ (2 + y) \cdot y = 3 \\ \end{matrix} \right.\ \]

\[y^{2} + 2y - 3 = 0\]

\[D_{1} = 1 + 3 = 4\]

\[y_{1} = - 1 + 2 = 1;\ \]

\[\ y_{2} = - 1 - 2 = - 3.\]

\[x_{1} = 2 + y = 2 + 1 = 3;\]

\[x_{2} = 2 + y = 2 - 3 = - 1.\]

\[2)\ \left\{ \begin{matrix} x - y = - 2 \\ xy = 3\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\left\{ \begin{matrix} y = x + 2\ \ \ \ \ \ \\ (x + 2)x = 3 \\ \end{matrix} \right.\ \]

\[x^{2} + 2x - 3 = 0\]

\[D_{1} = 1 + 3 = 4\]

\[x_{1} = - 1 + 2 = 1;\ \ \]

\[\ x_{2} = - 1 - 2 = - 3.\]

\[y_{1} = x + 2 = 1 + 2 = 3;\]

\[y_{2} = x + 2 = - 3 + 2 = - 1.\]

\[Ответ:( - 1; - 3);(3;1);\]

\[(1;3);( - 3;\ - 1).\]

\[3)\ \left\{ \begin{matrix} x - y = 17\ \ \ \\ \sqrt{x} - \sqrt{y} = 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[x - y = 17\]

\[\underset{1}{\overset{\left( \sqrt{x} - \sqrt{y} \right)}{︸}}\left( \sqrt{x} + \sqrt{y} \right) = 17\]

\[\sqrt{x} + \sqrt{y} = 17\]

\[\left\{ \begin{matrix} \sqrt{x} + \sqrt{y} = 17 \\ \sqrt{x} - \sqrt{y} = 1\ \ \ \\ \end{matrix} \right.\ ( + )\]

\[2\sqrt{x} = 18\]

\[\sqrt{x} = 9\]

\[x = 81.\]

\[y = x - 17 = 81 - 17 = 64.\]

\[Ответ:(81;64).\]

\[4)\ \left\{ \begin{matrix} x - y = 40\ \ \ \ \ \\ \sqrt{x} + \sqrt{y} = 20 \\ \end{matrix} \right.\ \]

\[x - y = 40\]

\[\underset{20}{\overset{\left( \sqrt{x} + \sqrt{y} \right)}{︸}}\left( \sqrt{x} - \sqrt{y} \right) = 40\]

\[20 \cdot \left( \sqrt{x} - \sqrt{y} \right) = 40\]

\[\sqrt{x} - \sqrt{y} = 2.\]

\[\left\{ \begin{matrix} \sqrt{x} - \sqrt{y} = 2\ \ \\ \sqrt{x} + \sqrt{y} = 20 \\ \end{matrix} \right.\ ( + )\]

\[2\sqrt{x} = 22\]

\[\sqrt{x} = 11\]

\[x = 121.\]

\[y = x - 40 = 121 - 40 = 81.\]

\[Ответ:(121;81).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам