\[\boxed{\mathbf{1245}\mathbf{.}}\]
\[1)\sin\left( x + \frac{\pi}{6} \right) + \cos\left( x + \frac{\pi}{3} \right) =\]
\[= 1 + \cos{2x}\]
\[\sin x \bullet \cos\frac{\pi}{6} + \sin\frac{\pi}{6} \bullet \cos x +\]
\[+ \cos x \bullet \cos\frac{\pi}{3} - \sin x \bullet \sin\frac{\pi}{3} =\]
\[= 1 + \cos{2x}\]
\[\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \frac{1}{2}\cos x -\]
\[- \frac{\sqrt{3}}{2}\sin x = \cos^{2}x + \sin^{2}x +\]
\[+ \cos^{2}x - \sin^{2}x\]
\[\cos x = 2\cos^{2}x\]
\[Пусть\ y = \cos x:\]
\[y = 2y^{2}\]
\[2y^{2} - y = 0\]
\[y(2y - 1) = 0\]
\[y_{1} = 0\ \ и\ \ y_{2} = \frac{1}{2}.\]
\[Первое\ уравнение:\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[Второе\ уравнение:\]
\[\cos x = \frac{1}{2}\]
\[x = \pm \arccos\frac{1}{2} + 2\pi n = \pm \frac{\pi}{3} +\]
\[+ 2\pi n.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n;\ \ \pm \frac{\pi}{3} + 2\pi n.\]
\[2)\sin\left( x - \frac{\pi}{4} \right) + \cos\left( x - \frac{\pi}{4} \right) =\]
\[= \sin{2x}\]
\[\sin x \bullet \cos\frac{\pi}{4} - \sin\frac{\pi}{4} \bullet \cos x +\]
\[+ \cos x \bullet \cos\frac{\pi}{4} + \sin x \bullet \sin\frac{\pi}{4} =\]
\[= \sin{2x}\]
\[\frac{\sqrt{2}}{2}\sin x - \frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\cos x +\]
\[+ \frac{\sqrt{2}}{2}\sin x = 2\sin x \bullet \cos x\]
\[\sqrt{2}\sin x = 2\sin x \bullet \cos x\]
\[\sqrt{2}\sin x - 2\sin x \bullet \cos x = 0\]
\[\sin x \bullet \left( \sqrt{2} - 2\cos x \right) = 0\]
\[Первое\ уравнение:\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Второе\ уравнение:\]
\[\sqrt{2} - 2\cos x = 0\]
\[2\cos x = \sqrt{2}\]
\[\cos x = \frac{\sqrt{2}}{2}\]
\[x = \pm \arccos\frac{\sqrt{2}}{2} + 2\pi n =\]
\[= \pm \frac{\pi}{4} + 2\pi n.\]
\[Ответ:\ \ \pi n;\ \ \pm \frac{\pi}{4} + 2\pi n.\]