\[\boxed{\mathbf{1244}\mathbf{.}}\]
\[1)\ \ 1 + 2\sin x = \sin{2x} + 2\cos x\]
\[\cos^{2}x + \sin^{2}x + 2\sin x =\]
\[= 2\sin x \bullet \cos x + 2\cos x\]
\[\left( \cos^{2}x + \sin^{2}x - 2\sin x \bullet \cos x \right) +\]
\[+ \left( 2\sin x - 2\cos x \right) = 0\]
\[\left( \cos x - \sin x \right)^{2} -\]
\[- 2\left( \cos x - \sin x \right) = 0\]
\[\left( \cos x - \sin x \right) \bullet\]
\[\bullet \left( \cos x - \sin x - 2 \right) = 0\]
\[Первое\ уравнение:\]
\[\cos x - \sin x = 0\ \ \ \ \ |\ :\cos x\]
\[1 - tg\ x = 0\]
\[tg\ x = 1\]
\[x = arctg\ 1 + \pi n = \frac{\pi}{4} + \pi n.\]
\[Второе\ уравнение:\]
\[\cos x - \sin x - 2 = 0\]
\[\cos x - \sin x = 2 - корней\ нет.\]
\[Ответ:\ \ \frac{\pi}{4} + \pi n.\]
\[2)\ 1 + 3\cos x = \sin{2x} + 3\sin x\]
\[\cos^{2}x + \sin^{2}x + 3\cos x =\]
\[= 2\sin x \bullet \cos x + 3\sin x\]
\[\left( \cos^{2}x + \sin^{2}x - 2\sin x \bullet \cos x \right) +\]
\[+ \left( 3\cos x - 3\sin x \right) = 0\]
\[\left( \cos x - \sin x \right)^{2} +\]
\[+ 3\left( \cos x - \sin x \right) = 0\]
\[\left( \cos x - \sin x \right) \bullet\]
\[\bullet \left( \cos x - \sin x + 3 \right) = 0\]
\[Первое\ уравнение:\]
\[\cos x - \sin x = 0\ \ \ \ \ |\ :\cos x\]
\[1 - tg\ x = 0\]
\[tg\ x = 1\]
\[x = arctg\ 1 + \pi n = \frac{\pi}{4} + \pi n.\]
\[Второе\ уравнение:\]
\[\cos x - \sin x + 3 = 0\]
\[\cos x - \sin x = - 3 - корней\]
\[\ нет.\]
\[Ответ:\ \ \frac{\pi}{4} + \pi n.\]