\[\boxed{\mathbf{1240}\mathbf{.}}\]
\[1)\cos^{2}{3x} - \cos{3x} \bullet \cos{5x} = 0\]
\[\cos{3x} \bullet \left( \cos{3x} - \cos{5x} \right) = 0\]
\[\cos{3x} \bullet ( - 2) \bullet \sin\frac{3x + 5x}{2} \bullet\]
\[\bullet \sin\frac{3x - 5x}{2} = 0\]
\[- 2 \bullet \cos{3x} \bullet \sin\frac{8x}{2} \bullet\]
\[\bullet \sin\left( - \frac{2x}{2} \right) = 0\]
\[2 \bullet \cos{3x} \bullet \sin{4x} \bullet \sin x = 0\]
\[Первое\ уравнение:\]
\[\cos{3x} = 0\]
\[3x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[x = \frac{1}{3} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{6} + \frac{\text{πn}}{3}\]
\[Второе\ уравнение:\]
\[\sin{4x} = 0\]
\[4x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{4} \bullet \pi n = \frac{\text{πn}}{4}.\]
\[Третье\ уравнение:\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Ответ:\ \ \frac{\pi}{6} + \frac{\text{πn}}{3};\ \ \frac{\text{πn}}{4}\text{.\ }\]
\[2)\sin x \bullet \sin{5x} - \sin^{2}{5x} = 0\]
\[\sin{5x} \bullet \left( \sin x - \sin{5x} \right) = 0\]
\[\sin{5x} \bullet 2 \bullet \sin\frac{x - 5x}{2} \bullet\]
\[\bullet \cos\frac{x + 5x}{2} = 0\]
\[2 \bullet \sin{5x} \bullet \sin\left( - \frac{4x}{2} \right) \bullet\]
\[\bullet \cos\frac{6x}{2} = 0\]
\[- 2 \bullet \sin{5x} \bullet \sin{2x} \bullet \cos{3x} = 0\]
\[Первое\ уравнение:\]
\[\sin{5x} = 0\]
\[5x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{5} \bullet \pi n = \frac{\text{πn}}{5}.\]
\[Второе\ уравнение:\]
\[\sin{2x} = 0\]
\[2x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{2} \bullet \pi n = \frac{\text{πn}}{2}.\]
\[Третье\ уравнение:\]
\[\cos{3x} = 0\]
\[3x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{3} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[Ответ:\ \ \frac{\text{πn}}{5};\ \ \frac{\text{πn}}{2};\ \ \frac{\pi}{6} + \frac{\text{πn}}{3}\text{.\ }\]