\[\boxed{\mathbf{1239}\mathbf{.}}\]
\[1)\sin{3x} = \sin{5x}\]
\[\sin{5x} - \sin{3x} = 0\]
\[2 \bullet \sin\frac{5x - 3x}{2} \bullet \cos\frac{5x + 3x}{2} = 0\]
\[\sin\frac{2x}{2} \bullet \cos\frac{8x}{2} = 0\]
\[\sin x \bullet \cos{4x} = 0\]
\[Первое\ уравнение:\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Второе\ уравнение:\]
\[\cos{4x} = 0\]
\[4x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{4} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{8} + \frac{\text{πn}}{4}.\]
\[Ответ:\ \ \pi n;\ \ \frac{\pi}{8} + \frac{\text{πn}}{4}.\]
\[2)\cos x = \cos{3x}\]
\[\cos x - \cos{3x} = 0\]
\[- 2 \bullet \sin\frac{x + 3x}{2} \bullet \sin\frac{x - 3x}{2} = 0\]
\[- 2 \bullet \sin\frac{4x}{2} \bullet \sin\left( - \frac{2x}{2} \right) = 0\]
\[2 \bullet \sin{2x} \bullet \sin x = 0\]
\[Первое\ уравнение:\]
\[\sin{2x} = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{2} \bullet \pi n = \frac{\text{πn}}{2}.\]
\[Второе\ уравнение:\]
\[\sin x = \arcsin 0 + \pi n = \pi n.\]
\[Ответ:\ \ \frac{\text{πn}}{2}\text{.\ }\]