\[\boxed{\mathbf{123}.}\]
\[2x^{2} + px - 2 = 0;\ \ \ x = 2\]
\[2 \cdot 4 + 2p - 2 = 0\]
\[2p + 6 = 0\]
\[2p = - 6\]
\[p = - 3.\]
\[2x^{2} - 3x - 2 = 0\]
\[D = 9 + 16 = 25\]
\[x_{1} = \frac{3 + 5}{4} = 2;\ \ \]
\[x_{2} = \frac{3 - 5}{4} = - \frac{1}{2}.\]
\[2x^{2} - 3x - 2 =\]
\[= 2 \cdot (x - 2)\left( x + \frac{1}{2} \right) =\]
\[= (x - 2)(2x + 1).\]