\[\boxed{\mathbf{1221}\mathbf{.}}\]
\[1)\cos x \geq \frac{\sqrt{2}}{2}\]
\[- \arccos\frac{\sqrt{2}}{2} + 2\pi n \leq x \leq\]
\[\leq \arccos\frac{\sqrt{2}}{2} + 2\pi n\]
\[Ответ:\ \ - \frac{\pi}{4} + 2\pi n \leq x \leq\]
\[\leq \frac{\pi}{4} + 2\pi n.\]
\[2)\cos x < \frac{\sqrt{3}}{2}\]
\[\arccos\frac{\sqrt{3}}{2} + 2\pi n < x < 2\pi -\]
\[- \arccos\frac{\sqrt{3}}{2} + 2\pi n\]
\[\frac{\pi}{6} + 2\pi n < x < 2\pi - \frac{\pi}{6} + 2\pi n\]
\[Ответ:\ \ \frac{\pi}{6} + 2\pi n < x < \frac{11\pi}{6} +\]
\[+ 2\pi n.\]
\[3)\cos x > - \frac{\sqrt{3}}{2}\]
\[- \arccos\left( - \frac{\sqrt{3}}{2} \right) + 2\pi n < x <\]
\[< \arccos\left( - \frac{\sqrt{3}}{2} \right) + 2\pi n\]
\[- \pi + \arccos\frac{\sqrt{3}}{2} + 2\pi n < x <\]
\[< \pi - \arccos\frac{\sqrt{3}}{2} + 2\pi n\]
\[- \pi + \frac{\pi}{6} + 2\pi n < x < \pi - \frac{\pi}{6} +\]
\[+ 2\pi n\]
\[Ответ:\ - \frac{5\pi}{6} + 2\pi n < x <\]
\[< \frac{5\pi}{6} + 2\pi n.\]
\[4)\cos x \leq - \frac{\sqrt{2}}{2}\ \]
\[\arccos\left( - \frac{\sqrt{2}}{2} \right) +\]
\[+ 2\pi n \leq x \leq 2\pi -\]
\[- \arccos\left( - \frac{\sqrt{2}}{2} \right) + 2\pi n\]
\[\pi - \arccos\frac{\sqrt{2}}{2} + 2\pi n \leq x \leq 2\pi -\]
\[- \pi + \arccos\frac{\sqrt{2}}{2} + 2\pi n\]
\[\pi - \frac{\pi}{4} + 2\pi n \leq x \leq \pi + \frac{\pi}{4} + 2\pi n\]
\[Ответ:\ \ \frac{3\pi}{4} + 2\pi n \leq x \leq \frac{5\pi}{4} +\]
\[+ 2\pi n.\]