\[\boxed{\mathbf{1217}\mathbf{.}}\]
\[\sin^{6}x + \cos^{6}x = a\]
\[\left( \sin^{2}x + \cos^{2}x \right) \cdot\]
\[\cdot \left( \cos^{4}x - \sin^{2}x\cos^{2}x + \sin^{4}x \right) =\]
\[= \left( \cos^{2}x + \sin^{2}x \right)^{2} -\]
\[- 2\sin^{2}x\cos^{2}x -\]
\[- \sin^{2}x\cos^{2}x =\]
\[= 1 - \frac{3}{4}\sin^{2}{2x} = 1 -\]
\[- \frac{3}{4} \cdot \frac{1 - \cos{4x}}{2} = \frac{5}{8} + \frac{3}{8}\cos{4x}\]
\[\frac{5}{8} + \frac{3}{8}\cos{4x} = a\]
\[\cos{4x} = \frac{8}{3}a - \frac{5}{3}\]
\[Уравнение\ имеет\ решение\]
\[\ при:\]
\[- 1 \leq \frac{8}{3}a - \frac{5}{3} \leq 1\]
\[\frac{2}{3} \leq \frac{8}{3}a \leq \frac{8}{3}\]
\[\frac{1}{4} \leq a \leq 1\]
\[Ответ:при\ \frac{1}{4} \leq a \leq 1.\]