\[\boxed{\mathbf{1214}\mathbf{.}}\]
\[1)\ 5\sin^{4}x + 3\cos^{6}x = 8\]
\[0 \leq 5\sin^{4}x \leq 5;\]
\[0 \leq 3\cos^{6}x \leq 3;\]
\[0 \leq 5\sin^{4}x + 3\cos^{6}x \leq 8:\]
\[\sin x = \pm 1;\ \cos x = \pm 1.\]
\[Нет\ корней.\]
\[2)\sin^{3}x + 2\cos^{5}x = \sqrt{10}\]
\[- 1 \leq \sin^{3}x \leq 1;\]
\[- 2 \leq 2\cos^{5}x \leq 2\]
\[- 3 \leq \sin^{3}x + 2\cos^{5}x \leq 3\]
\[Но\ \sqrt{10} > 3:\]
\[нет\ корней.\]
\[3)\sin x\sin{5x}\sin{17x} = 1\]
\[- 1 \leq \sin x\sin{5x}\sin{17x} \leq 1:\]
\[\sin x = 1;\ \sin{5x} = 1;\ \]
\[\sin{17x} = 1\]
\[При\ x = \frac{\pi}{2} + 2\pi n.\]
\[4)\cos x\cos{2x}\cos{3x} = 1\]
\[Равенство\ возможно,\ если:\]
\[\cos x = 1;\ \cos{2x} = 1;\ \]
\[\cos{3x} = 1\]
\[При\ x = \pi n.\]