\[\boxed{\mathbf{1213}\mathbf{.}}\]
\[1)\ 4\sin{3x} + \sin{5x} -\]
\[- 2\sin x \bullet \cos{2x} = 0\]
\[4\sin{3x} + \sin{5x} + \sin{2x} \bullet\]
\[\cdot \cos x - 2\sin x \bullet \cos{2x} -\]
\[- \sin{2x} \bullet \cos x = 0\]
\[4\sin{3x} + \sin{5x} + \sin(2x - x) -\]
\[- \sin(2x + x) = 0\]
\[4\sin{3x} + \sin{5x} + \sin x -\]
\[- \sin{3x} = 0\]
\[3\sin{3x} + 2 \bullet \sin\frac{5x + x}{2} \bullet\]
\[\cdot \cos\frac{5x - x}{2} = 0\]
\[3\sin{3x} + 2 \bullet \sin{3x} \bullet \cos{2x} = 0\]
\[\sin{3x} \bullet \left( 3 + 2\cos{2x} \right) = 0\]
\[Первое\ уравнение:\]
\[\sin{3x} = 0\]
\[3x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{3} \bullet \pi n = \frac{\text{πn}}{3}.\]
\[Второе\ уравнение:\]
\[3 + 2\cos{2x} = 0\]
\[2\cos{2x} = - 3\]
\[\cos{2x} = - \frac{3}{2} - корней\ нет.\]
\[Ответ:\ \ \frac{\text{πn}}{3}.\]
\[2)\ 6\cos{2x} \bullet \sin x + 7\sin{2x} = 0\]
\[6\cos{2x} \bullet \sin x +\]
\[+ 14\sin x \bullet \cos x = 0\]
\[2\sin x \bullet \left( 3\cos{2x} + 7\cos x \right) = 0\]
\[3\cos{2x} + 7\cos x = 0\]
\[3\cos^{2}x - 3\sin^{2}x + 7\cos x = 0\]
\[3\cos^{2}x - 3\left( 1 - \cos^{2}x \right) +\]
\[+ 7\cos x = 0\]
\[3\cos^{2}x - 3 + 3\cos^{2}x +\]
\[+ 7\cos x = 0\]
\[6\cos^{2}x + 7\cos x - 3 = 0\]
\[Пусть\ y = \cos x:\]
\[6y^{2} + 7y - 3 = 0\]
\[D = 7^{2} + 4 \bullet 6 \bullet 3 = 49 + 72 =\]
\[= 121 = 11^{2}\]
\[y_{1} = \frac{- 7 - 11}{2 \bullet 6} = - \frac{18}{12} = - \frac{3}{2}\text{\ \ }и\ \]
\[\ y_{2} = \frac{- 7 + 11}{2 \bullet 6} = \frac{4}{12} = \frac{1}{3}.\]
\[Первое\ уравнение:\]
\[2\sin x = 0\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Второе\ уравнение:\]
\[\cos x = - \frac{3}{2} - корней\ нет.\]
\[Третье\ уравнение:\]
\[\cos x = \frac{1}{3}\]
\[x = \pm \arccos\frac{1}{3} + 2\pi n.\]
\[Ответ:\ \ \pi n;\ \ \pm \arccos\frac{1}{3} + 2\pi n.\]
\[3)\sin x\sin{5x} = 1\]
\[16\sin^{2}x\cos^{4}x -\]
\[- 12\sin^{2}x\cos^{2}x + \sin^{2}x -\]
\[- {sin²}x - \cos^{2}x = 0\]
\[- 16\cos^{6}x + 28\cos^{4}x -\]
\[- 13\cos^{2}x = 0\]
\[- \cos^{2}x \cdot\]
\[\cdot \left( 16\cos^{4}x - 28\cos^{2}x + 13 \right) =\]
\[= 0\]
\[\cos^{2}x = 0\]
\[x = \frac{\pi}{2} + \pi n.\]
\[16\cos^{4}x - 28\cos^{2}x + 13 = 0\]
\[Пусть\ \cos^{2}x = y:\]
\[16y^{2} - 28y + 13 = 0\]
\[D_{1} = 196 - 208 < 0 - нет\ \]
\[корней.\]
\[Ответ:x = \frac{\pi}{2} + \pi n.\]
\[4)\sin x\cos{4x} = - 1\]
\[\frac{1}{2}\left( \sin{5x} + \sin{3x} \right) = 1\]
\[- \frac{1}{2} \leq \sin{5x} \leq \frac{1}{2}\]
\[- \frac{1}{2} \leq \sin{3x} \leq \frac{1}{2}\]
\[Левая\ часть\ равна\ ( - 1),\ при\]
\[\sin{5x} = - 1\ и\sin{3x} = - 1:\]
\[x = - \frac{\pi}{2} + 2\pi n.\]
\[Ответ:x = - \frac{\pi}{2} + \pi n.\]