\[\boxed{\mathbf{1192}\mathbf{.}}\]
\[1)\sin^{2}x = \frac{1}{4}\]
\[\frac{1 - \cos{2x}}{2} = \frac{1}{4}\]
\[4\left( 1 - \cos{2x} \right) = 2\]
\[4 - 4\cos{2x} = 2\]
\[4\cos{2x} = 4 - 2\]
\[\cos{2x} = \frac{1}{2}\]
\[2x = \pm \arccos\frac{1}{2} + 2\pi n =\]
\[= \pm \frac{\pi}{3} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \pm \frac{\pi}{3} + 2\pi n \right) = \pm \frac{\pi}{6} + \pi n\]
\[Ответ:\ \pm \frac{\pi}{6} + \pi n.\]
\[2)\cos^{2}x = \frac{1}{2}\]
\[\frac{1 + \cos{2x}}{2} = \frac{1}{2}\]
\[1 + \cos{2x} = 1\]
\[\cos{2x} = 0\]
\[2x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}\]
\[Ответ:\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[3)\ 2\sin^{2}x + \sin x - 1 = 0\]
\[Пусть\ y = \sin x:\]
\[2y^{2} + y - 1 = 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[y_{1} = \frac{- 1 - 3}{2 \bullet 2} = - 1\ \ и\ \]
\[\ y_{2} = \frac{- 1 + 3}{2 \bullet 2} = \frac{1}{2}\]
\[1)\ \sin x = - 1\]
\[x = - \arcsin 1 + 2\pi n =\]
\[= - \frac{\pi}{2} + 2\pi n.\]
\[2)\ \sin x = \frac{1}{2}\]
\[x = ( - 1)^{n} \bullet \arcsin\frac{1}{2} + \pi n =\]
\[= ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]
\[Ответ:\ - \frac{\pi}{2} +\]
\[+ 2\pi n\ \ ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]
\[4)\ 2\cos^{2}x + \cos x - 6 = 0\]
\[Пусть\ y = \cos x:\]
\[2y^{2} + y - 6 = 0\]
\[D = 1^{2} + 4 \bullet 2 \bullet 6 = 1 + 48 = 49\]
\[y_{1} = \frac{- 1 - 7}{2 \bullet 2} = - 2\ \ и\ \ \]
\[y_{2} = \frac{- 1 + 7}{2 \bullet 2} = \frac{6}{4}\]
\[Так\ как\ |y| > 1,\ то\ корней\ нет\]
\[Ответ:\ \ корней\ нет.\]