\[\boxed{\mathbf{1167}\mathbf{.}}\]
\[1)\arcsin{(\sqrt{5}} - 2):\]
\[4 < 5 < 9\]
\[2 < \sqrt{5} < 3\]
\[0 < \sqrt{5} - 2 < 1\]
\[Ответ:\ \ да.\]
\[2)\arcsin\left( \sqrt{5} - 3 \right):\]
\[4 < 5 < 9\]
\[2 < \sqrt{5} < 3\]
\[- 1 < \sqrt{5} - 3 < 0\]
\[Ответ:\ \ да.\]
\[3)\arcsin\left( 3 - \sqrt{17} \right):\]
\[16 < 17 < 25\]
\[4 < \sqrt{17} < 5\]
\[- 5 < - \sqrt{17} < - 4\]
\[- 2 < 3 - \sqrt{17} < - 1\]
\[Ответ:\ \ нет.\]
\[4)\arcsin\left( 2 - \sqrt{10} \right):\]
\[9 < 10 < 16\]
\[3 < \sqrt{10} < 4\]
\[- 4 < - \sqrt{10} < - 3\]
\[- 2 < 2 - \sqrt{10} < - 1\]
\[Ответ:\ \ нет.\]
\[5)\ tg\left( 6\arcsin\frac{1}{2} \right) =\]
\[= \text{tg}\left( 6 \bullet \frac{\pi}{6} \right) = tg\ \pi = 0\]
\[Ответ:\ \ да.\]
\[6)\ tg\left( 2\arcsin\frac{\sqrt{2}}{2} \right) =\]
\[= \text{tg}\left( 2 \bullet \frac{\pi}{4} \right) = tg\left( \frac{\pi}{2} \right)\]
\[Ответ:\ \ нет.\]