\[\boxed{\mathbf{116}.}\]
\[Пусть\ x - одно\ число;\]
\[y - второе\ число.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} x + y = 9\frac{1}{2} \\ x \cdot y = 12\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\left\{ \begin{matrix} x = 9,5 - y\ \ \ \ \ \ \ \ \ \\ (4,5 - y)y = 12 \\ \end{matrix} \right.\ \]
\[9,5y - y^{2} - 12 = 0\ \ \ \ \ \ | \cdot ( - 2)\]
\[2y^{2} - 19y + 24 = 0\]
\[D = 361 - 192 = 169\]
\[y_{1} = \frac{19 + 13}{4} = 8;\ \ \]
\[y_{2} = \frac{19 - 12}{4} = \frac{7}{4} = 1,5.\]
\[x_{1} = 9,5 - 8 = 1,5;\ \ \]
\[x_{2} = 9,5 - 1,5 = 8.\]
\[Ответ:числа\ 1,5\ и\ 8.\]